Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1983 May;3(5):946–955. doi: 10.1128/mcb.3.5.946

Myogenic differentiation of L6 rat myoblasts: evidence for pleiotropic effects on myogenesis by RNA polymerase II mutations to alpha-amanitin resistance.

M M Crerar, R Leather, E David, M L Pearson
PMCID: PMC368617  PMID: 6865946

Abstract

To assess the functional role of RNA polymerase II in the regulation of transcription during muscle differentiation, we isolated and characterized a large number of independent alpha-amanitin-resistant (AmaR) mutants of L6 rat myoblasts that express both wild-type and altered RNA polymerase II activities. We also examined their myogenic (Myo) phenotype by determining their ability to develop into mature myotubes, to express elevated levels of muscle creatine kinase, and to synthesize muscle-characteristic proteins as detected by two-dimensional polyacrylamide gel electrophoresis. We found a two- to threefold increase in the frequency of clones with a myogenic-defective phenotype in the AmaR (RNA polymerase II) mutants as compared to control ethyl methane sulfonate-induced, 6-thioguanine-resistant (hypoxanthine, guanine phosphoribosyl transferase) mutants or to unselected survivors also exposed to ethyl methane sulfonate. Subsequent analysis showed that about half of these myogenic-defective AmaR mutants had a conditional Myo(ama) phenotype; when cultured in the presence of amanitin, they exhibited a Myo- phenotype; in its absence they exhibited a Myo+ phenotype. This conditional Myo(ama) phenotype is presumably caused by the inactivation by amanitin of the wild-type amanitin-sensitive RNA polymerase II activity and the subsequent rise in the level of mutant amanitin-resistant RNA polymerase II activity. In these Myo(ama) mutants, the wild-type RNA polymerase II is normally dominant with respect to the Myo+ phenotype, whereas the mutant RNA polymerase II is recessive and results in a Myo- phenotype only when the wild-type enzyme is inactivated. These findings suggest that certain mutations in the amaR structural gene for the amanitin-binding subunit of RNA polymerase II can selectively impair the transcription of genes specific for myogenic differentiation but not those specific for myoblast proliferation.

Full text

PDF
949

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amati P., Blasi F., Di Porzio U., Riccio A., Traboni C. Hamster alpha-amanitine-resistant RNA polymerase II able to transcribe polyoma virus genome in somatic cell hybrids. Proc Natl Acad Sci U S A. 1975 Feb;72(2):753–757. doi: 10.1073/pnas.72.2.753. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Benoff S., Nadal-Ginard B. N. Cell-free translation of mammalian myosin heavy-chain messenger ribonucleic acid from growing and fused-L6E9 myoblasts. Biochemistry. 1979 Feb 6;18(3):494–500. doi: 10.1021/bi00570a019. [DOI] [PubMed] [Google Scholar]
  3. Benoff S., Nadal-Ginard B. Most myosin heavy chain mRNA in L6E9 rat myotubes has a short poly(A) tail. Proc Natl Acad Sci U S A. 1979 Apr;76(4):1853–1857. doi: 10.1073/pnas.76.4.1853. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bowman L. H., Emerson C. P., Jr Formation and stability of cytoplasmic mRNAs during myoblast differentiation: pulse-chase and density labeling analyses. Dev Biol. 1980 Nov;80(1):146–166. doi: 10.1016/0012-1606(80)90505-9. [DOI] [PubMed] [Google Scholar]
  5. Bryant R. E., Adelberg E. A., Magee P. T. Properties of an altered RNA polymerase II activity from an alpha-amanitin-resistant mouse cell line. Biochemistry. 1977 Sep 20;16(19):4237–4244. doi: 10.1021/bi00638a017. [DOI] [PubMed] [Google Scholar]
  6. Buchwald M., Ingles C. J. Human diploid fibroblast mutants with altered RNA polymerase II. Somatic Cell Genet. 1976 May;2(3):225–233. doi: 10.1007/BF01538961. [DOI] [PubMed] [Google Scholar]
  7. Chan V. L., Whitmore G. F., Siminovitch L. Mammalian cells with altered forms of RNA polymerase II. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3119–3123. doi: 10.1073/pnas.69.11.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Crerar M. M., Andrews S. J., David E. S., Somers D. G., Mandel J. L., Pearson M. L. Amanitin binding to RNA polymerase II in alpha-amanitin-resistant rat myoblast mutants. J Mol Biol. 1977 May 15;112(2):317–329. doi: 10.1016/s0022-2836(77)80147-2. [DOI] [PubMed] [Google Scholar]
  9. Crerar M. M., Pearson M. L. RNA polymerase II regulation in alpha-amanitin-resistant rat myoblast mutants. Changes in wild-type and mutant enzyme levels during growth in alpha-amanitin. J Mol Biol. 1977 May 15;112(2):331–342. doi: 10.1016/s0022-2836(77)80148-4. [DOI] [PubMed] [Google Scholar]
  10. Doi R. H. Genetic control of sporulation. Annu Rev Genet. 1977;11:29–48. doi: 10.1146/annurev.ge.11.120177.000333. [DOI] [PubMed] [Google Scholar]
  11. Garrels J. I. Changes in protein synthesis during myogenesis in a clonal cell line. Dev Biol. 1979 Nov;73(1):134–152. doi: 10.1016/0012-1606(79)90143-x. [DOI] [PubMed] [Google Scholar]
  12. Georgopoulos C. P. Bacterial mutants in which the gene N function of bacteriophage lambda is blocked have an altered RNA polymerase. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2977–2981. doi: 10.1073/pnas.68.12.2977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Ghysen A., Pironio M. Relationship between the N function of bacteriophage lambda and host RNA polymerase. J Mol Biol. 1972 Mar 28;65(2):259–272. doi: 10.1016/0022-2836(72)90281-1. [DOI] [PubMed] [Google Scholar]
  14. Greenleaf A. L., Borsett L. M., Jiamachello P. F., Coulter D. E. Alpha-amanitin-resistant D. melanogaster with an altered RNA polymerase II. Cell. 1979 Nov;18(3):613–622. doi: 10.1016/0092-8674(79)90116-8. [DOI] [PubMed] [Google Scholar]
  15. Greenleaf A. L., Weeks J. R., Voelker R. A., Ohnishi S., Dickson B. Genetic and biochemical characterization of mutants at an RNA polymerase II locus in D. melanogaster. Cell. 1980 Oct;21(3):785–792. doi: 10.1016/0092-8674(80)90441-9. [DOI] [PubMed] [Google Scholar]
  16. Guialis A., Beatty B. G., Ingles C. J., Crerar M. M. Regulation of RNA polymerase II activity in alpha-amanitin-resistant CHO hybrid cells. Cell. 1977 Jan;10(1):53–60. doi: 10.1016/0092-8674(77)90139-8. [DOI] [PubMed] [Google Scholar]
  17. Guialis A., Morrison K. E., Ingles C. J. Regulated synthesis of RNA polymerase II polypeptides in Chinese hamster ovary cell lines. J Biol Chem. 1979 May 25;254(10):4171–4176. [PubMed] [Google Scholar]
  18. Harris A. J., Heinemann S., Schubert D., Tarakis H. Trophic interaction between cloned tissue culture lines of nerve and muscle. Nature. 1971 Jun 4;231(5301):296–301. doi: 10.1038/231296a0. [DOI] [PubMed] [Google Scholar]
  19. Hastings K. E., Emerson C. P., Jr cDNA clone analysis of six co-regulated mRNAs encoding skeletal muscle contractile proteins. Proc Natl Acad Sci U S A. 1982 Mar;79(5):1553–1557. doi: 10.1073/pnas.79.5.1553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ingles C. J., Guialis A., Lam J., Siminovitch L. Alpha-Amanitin resistance of RNA polymerase II in mutant Chinese hamster ovary cell lines. J Biol Chem. 1976 May 10;251(9):2729–2734. [PubMed] [Google Scholar]
  21. Ingles C. J. Temperature-sensitive RNA polymerase II mutations in Chinese hamster ovary cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):405–409. doi: 10.1073/pnas.75.1.405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Kaufman S. J., Parks C. M. Loss of growth control and differentiation in the fu-1 variant of the L8 line of rat myoblasts. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3888–3892. doi: 10.1073/pnas.74.9.3888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Kedinger C., Gniazdowski M., Mandel J. L., Jr, Gissinger F., Chambon P. Alpha-amanitin: a specific inhibitor of one of two DNA-pendent RNA polymerase activities from calf thymus. Biochem Biophys Res Commun. 1970 Jan 6;38(1):165–171. doi: 10.1016/0006-291x(70)91099-5. [DOI] [PubMed] [Google Scholar]
  24. Krauter K. S., Soeiro R., Nadal-Ginard B. Transcriptional regulation of ribosomal RNA accumulation during L6E9 myoblast differentiation. J Mol Biol. 1979 Nov 15;134(4):727–741. doi: 10.1016/0022-2836(79)90482-0. [DOI] [PubMed] [Google Scholar]
  25. Lecocq J., Dambly C. A bacterial RNA polymerase mutant that renders lambda growth independent of the N and cro functions at 42 degrees C. Mol Gen Genet. 1976 Apr 23;145(1):53–64. doi: 10.1007/BF00331557. [DOI] [PubMed] [Google Scholar]
  26. Lindell T. J., Weinberg F., Morris P. W., Roeder R. G., Rutter W. J. Specific inhibition of nuclear RNA polymerase II by alpha-amanitin. Science. 1970 Oct 23;170(3956):447–449. doi: 10.1126/science.170.3956.447. [DOI] [PubMed] [Google Scholar]
  27. Lobban P. E., Siminovitch L. Alpha-amanitin resistance: a dominant mutation in CHO cells. Cell. 1975 Feb;4(2):167–172. doi: 10.1016/0092-8674(75)90123-3. [DOI] [PubMed] [Google Scholar]
  28. Loomis W. F., Jr, Wahrmann J. P., Luzzati D. Temperature-sensitive variants of an established myoblast line. Proc Natl Acad Sci U S A. 1973 Feb;70(2):425–429. doi: 10.1073/pnas.70.2.425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Mandel J. L., Pearson M. L. Insulin stimulates myogenesis in a rat myoblast line. Nature. 1974 Oct 18;251(5476):618–620. doi: 10.1038/251618a0. [DOI] [PubMed] [Google Scholar]
  30. Mortin M. A., Lefevre G., Jr An RNA polymerase II mutation in Drosophila melanogaster that mimics ultrabithorax. Chromosoma. 1981;82(2):237–247. doi: 10.1007/BF00286108. [DOI] [PubMed] [Google Scholar]
  31. O'Farrell P. H. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975 May 25;250(10):4007–4021. [PMC free article] [PubMed] [Google Scholar]
  32. Ordahl C. P., Kioussis D., Tilghman S. M., Ovitt C. E., Fornwald J. Molecular cloning of developmentally regulated, low-abundance mRNA sequences from embryonic muscle. Proc Natl Acad Sci U S A. 1980 Aug;77(8):4519–4523. doi: 10.1073/pnas.77.8.4519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Patrick J., Heinemann S. F., Lindstrom J., Schubert D., Steinbach J. H. Appearance of acetylcholine receptors during differentiation of a myogenic cell line. Proc Natl Acad Sci U S A. 1972 Oct;69(10):2762–2766. doi: 10.1073/pnas.69.10.2762. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Schubert D., Tarikas H., Humphreys S., Heinemann S., Patrick J. Protein synthesis and secretion in a myogenic cell line. Dev Biol. 1973 Jul;33(1):18–37. doi: 10.1016/0012-1606(73)90161-9. [DOI] [PubMed] [Google Scholar]
  35. Shani M., Zevin-Sonkin D., Saxel O., Carmon Y., Katcoff D., Nudel U., Yaffe D. The correlation between the synthesis of skeletal muscle actin, myosin heavy chain, and myosin light chain and the accumulation of corresponding mRNA sequences during myogenesis. Dev Biol. 1981 Sep;86(2):483–492. doi: 10.1016/0012-1606(81)90206-2. [DOI] [PubMed] [Google Scholar]
  36. Somers D. G., Pearson M. L., Ingles C. J. Isolation and characterization of an alpha-amanitin-resistant rat myoblast mutant cell line possessing alpha-amanitin-resistant RNA polymerase II. J Biol Chem. 1975 Jul 10;250(13):4825–4831. [PubMed] [Google Scholar]
  37. Somers D. G., Pearson M. L., Ingles C. J. Regulation of RNA polymerase II activity in a mutant rat myoblast cell line resistant to alpha-amanitin. Nature. 1975 Jan 31;253(5490):372–374. doi: 10.1038/253372a0. [DOI] [PubMed] [Google Scholar]
  38. Sonenshein A. L., Cami B., Brevet J., Cote R. Isolation and characterization of rifampin-resistant and streptolydigin-resistant mutants of Bacillus subtilis with altered sporulation properties. J Bacteriol. 1974 Oct;120(1):253–265. doi: 10.1128/jb.120.1.253-265.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Wahrmann J. P., Gros F., Luzzati D. Phosphorylase and glycogen synthetase during myoblast differentiation. Biochimie. 1973;55(4):457–463. doi: 10.1016/s0300-9084(73)80212-3. [DOI] [PubMed] [Google Scholar]
  40. Wulf E., Bautz L. RNA polymerase B from an alpha-amanitin resistant mouse myeloma cell line. FEBS Lett. 1976 Oct 15;69(1):6–10. doi: 10.1016/0014-5793(76)80641-2. [DOI] [PubMed] [Google Scholar]
  41. Yaffe D. Retention of differentiation potentialities during prolonged cultivation of myogenic cells. Proc Natl Acad Sci U S A. 1968 Oct;61(2):477–483. doi: 10.1073/pnas.61.2.477. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES