Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1984 Mar;4(3):500–506. doi: 10.1128/mcb.4.3.500

Co-amplification of double minute chromosomes, multiple drug resistance, and cell surface P-glycoprotein in DNA-mediated transformants of mouse cells.

S M Robertson, V Ling, C P Stanners
PMCID: PMC368728  PMID: 6144041

Abstract

A genetic system comprised of mammalian cell mutants which demonstrate concomitant resistance to a number of unrelated drugs has been described previously. The resistance is due to reduced cell membrane permeability and is correlated with the presence of large amounts of a plasma membrane glycoprotein termed P-glycoprotein. This system could represent a model for multiple drug resistance which develops in cancer patients treated with chemotherapeutic drugs. We demonstrate here that the multiple drug resistance phenotype can be transferred to mouse cells with DNA from a drug-resistant mutant and then amplified quantitatively by culture in media containing increasing concentrations of drug. The amount of P-glycoprotein was correlated directly with the degree of drug resistance in the transformants and amplified transformants. In addition, the drug resistance and expression of P-glycoprotein of the transformants were unstable and associated quantitatively with the number of double minute chromosomes. We suggest that the gene for multiple drug resistance and P-glycoprotein is contained in these extrachromosomal particles and is amplified by increases in double minute chromosome number. The potential use of this system for manipulation of mammalian genes in general is discussed.

Full text

PDF
502

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alt F. W., Kellems R. E., Bertino J. R., Schimke R. T. Selective multiplication of dihydrofolate reductase genes in methotrexate-resistant variants of cultured murine cells. J Biol Chem. 1978 Mar 10;253(5):1357–1370. [PubMed] [Google Scholar]
  2. Barker P. E. Double minutes in human tumor cells. Cancer Genet Cytogenet. 1982 Feb;5(1):81–94. doi: 10.1016/0165-4608(82)90043-7. [DOI] [PubMed] [Google Scholar]
  3. Barker P. E., Stubblefield E. Ultrastructure of double minutes from a human tumor cell line. J Cell Biol. 1979 Dec;83(3):663–666. doi: 10.1083/jcb.83.3.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baskin F., Carlin S. C., Kraus P., Friedkin M., Rosenberg R. N. Experimental chemotherapy of neuroblastoma. II. Increased thymidylate synthetase activity in a 5-fluorodeoxyuridine-resistant variant of mouse neuroblastoma. Mol Pharmacol. 1975 Jan;11(1):105–117. [PubMed] [Google Scholar]
  5. Baskin F., Rosenberg R. N., Dev V. Correlation of double-minute chromosomes with unstable multidrug cross-resistance in uptake mutants of neuroblastoma cells. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3654–3658. doi: 10.1073/pnas.78.6.3654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Beach L. R., Palmiter R. D. Amplification of the metallothionein-I gene in cadmium-resistant mouse cells. Proc Natl Acad Sci U S A. 1981 Apr;78(4):2110–2114. doi: 10.1073/pnas.78.4.2110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bech-Hansen N. T., Sarangi F., Sutherland D. J., Ling V. Rapid assays for evaluating the drug sensitivity of tumor cells. J Natl Cancer Inst. 1977 Jul;59(1):21–27. doi: 10.1093/jnci/59.1.21. [DOI] [PubMed] [Google Scholar]
  8. Bech-Hansen N. T., Till J. E., Ling V. Pleiotropic phenotype of colchicine-resistant CHO cells: cross-resistance and collateral sensitivity. J Cell Physiol. 1976 May;88(1):23–31. doi: 10.1002/jcp.1040880104. [DOI] [PubMed] [Google Scholar]
  9. Beck W. T., Mueller T. J., Tanzer L. R. Altered surface membrane glycoproteins in Vinca alkaloid-resistant human leukemic lymphoblasts. Cancer Res. 1979 Jun;39(6 Pt 1):2070–2076. [PubMed] [Google Scholar]
  10. Bertino J. R., Donohue D. M., Simmons B., Gabrio B. W., Silber R., Huennekens F. M. THE "INDUCTION" OF DIHYDROFOLIC REDUCTASE ACTIVITY IN LEUKOCYTES AND ERYTHROCYTES OF PATIENTS TREATED WITH AMETHOPTERIN. J Clin Invest. 1963 Apr;42(4):466–475. doi: 10.1172/JCI104735. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Brown P. C., Beverley S. M., Schimke R. T. Relationship of amplified dihydrofolate reductase genes to double minute chromosomes in unstably resistant mouse fibroblast cell lines. Mol Cell Biol. 1981 Dec;1(12):1077–1083. doi: 10.1128/mcb.1.12.1077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Caizzi R., Bostock C. J. Gene amplification in methotrexate-resistant mouse cells. IV. Different DNA sequences are amplified in different resistant lines. Nucleic Acids Res. 1982 Nov 11;10(21):6597–6618. doi: 10.1093/nar/10.21.6597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Criscuolo B. A., Krag S. S. Selection of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosaminyltransferase activity. J Cell Biol. 1982 Sep;94(3):586–591. doi: 10.1083/jcb.94.3.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. DULBECCO R., VOGT M. Plaque formation and isolation of pure lines with poliomyelitis viruses. J Exp Med. 1954 Feb;99(2):167–182. doi: 10.1084/jem.99.2.167. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Debenham P. G., Kartner N., Siminovitch L., Riordan J. R., Ling V. DNA-mediated transfer of multiple drug resistance and plasma membrane glycoprotein expression. Mol Cell Biol. 1982 Aug;2(8):881–889. doi: 10.1128/mcb.2.8.881. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Degnen G. E., Miller I. L., Adelberg E. A., Eisenstadt J. M. Overexpression of an unstably inherited gene in cultured mouse cells. Proc Natl Acad Sci U S A. 1977 Sep;74(9):3956–3959. doi: 10.1073/pnas.74.9.3956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Gantt J. S., Bennett C. A., Arfin S. M. Increased levels of threonyl-tRNA synthetase in a borrelidin-resistant Chinese hamster ovary cell line. Proc Natl Acad Sci U S A. 1981 Sep;78(9):5367–5370. doi: 10.1073/pnas.78.9.5367. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Gantt J. S., Chiang C. S., Hatfield G. W., Arfin S. M. Chinese hamster ovary cells resistant to beta-aspartylhydroxamate contain increased levels of asparagine synthetase. J Biol Chem. 1980 May 25;255(10):4808–4813. [PubMed] [Google Scholar]
  19. Garman D., Center M. S. Alterations in cell surface membranes in Chinese hamster lung cell resistant to adriamycin. Biochem Biophys Res Commun. 1982 Mar 15;105(1):157–163. doi: 10.1016/s0006-291x(82)80025-9. [DOI] [PubMed] [Google Scholar]
  20. George D. L., Powers V. E. Cloning of DNA from double minutes of Y1 mouse adrenocortical tumor cells: evidence for gene amplification. Cell. 1981 Apr;24(1):117–123. doi: 10.1016/0092-8674(81)90507-9. [DOI] [PubMed] [Google Scholar]
  21. Graham F. L., van der Eb A. J. A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology. 1973 Apr;52(2):456–467. doi: 10.1016/0042-6822(73)90341-3. [DOI] [PubMed] [Google Scholar]
  22. Haber D. A., Schimke R. T. Chromosome-mediated transfer and amplification of an altered mouse dihydrofolate reductase gene. Somatic Cell Genet. 1982 Jul;8(4):499–508. doi: 10.1007/BF01538710. [DOI] [PubMed] [Google Scholar]
  23. Juliano R. L., Ling V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim Biophys Acta. 1976 Nov 11;455(1):152–162. doi: 10.1016/0005-2736(76)90160-7. [DOI] [PubMed] [Google Scholar]
  24. Juliano R. Drug-resistant mutants of Chinese hamster ovary cells possess an altered cell surface carbohydrate component. J Supramol Struct. 1976;4(4):521–526. doi: 10.1002/jss.400040412. [DOI] [PubMed] [Google Scholar]
  25. Kartner N., Shales M., Riordan J. R., Ling V. Daunorubicin-resistant Chinese hamster ovary cells expressing multidrug resistance and a cell-surface P-glycoprotein. Cancer Res. 1983 Sep;43(9):4413–4419. [PubMed] [Google Scholar]
  26. Kaufman R. J., Brown P. C., Schimke R. T. Amplified dihydrofolate reductase genes in unstably methotrexate-resistant cells are associated with double minute chromosomes. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5669–5673. doi: 10.1073/pnas.76.11.5669. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Kaufman R. J., Brown P. C., Schimke R. T. Loss and stabilization of amplified dihydrofolate reductase genes in mouse sarcoma S-180 cell lines. Mol Cell Biol. 1981 Dec;1(12):1084–1093. doi: 10.1128/mcb.1.12.1084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Kaufman R. J., Schimke R. T. Amplification and loss of dihydrofolate reductase genes in a Chinese hamster ovary cell line. Mol Cell Biol. 1981 Dec;1(12):1069–1076. doi: 10.1128/mcb.1.12.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Kempe T. D., Swyryd E. A., Bruist M., Stark G. R. Stable mutants of mammalian cells that overproduce the first three enzymes of pyrimidine nucleotide biosynthesis. Cell. 1976 Dec;9(4 Pt 1):541–550. doi: 10.1016/0092-8674(76)90036-2. [DOI] [PubMed] [Google Scholar]
  30. Klobutcher L. A., Ruddle F. H. Phenotype stabilisation and integration of transferred material in chromosome-mediated gene transfer. Nature. 1979 Aug 23;280(5724):657–660. doi: 10.1038/280657a0. [DOI] [PubMed] [Google Scholar]
  31. Lewis W. H., Srinivasan P. R., Stokoe N., Siminovitch L. Parameters governing the transfer of the genes for thymidine kinase and dihydrofolate reductase into mouse cells using metaphase chromosomes or DNA. Somatic Cell Genet. 1980 May;6(3):333–347. doi: 10.1007/BF01542787. [DOI] [PubMed] [Google Scholar]
  32. Ling V., Baker R. M. Dominance of colchicine resistance in hybrid CHO cells. Somatic Cell Genet. 1978 Mar;4(2):193–200. doi: 10.1007/BF01538984. [DOI] [PubMed] [Google Scholar]
  33. Ling V. Drug resistance and membrane alteration in mutants of mammalian cells. Can J Genet Cytol. 1975 Dec;17(4):503–515. doi: 10.1139/g75-064. [DOI] [PubMed] [Google Scholar]
  34. Ling V., Thompson L. H. Reduced permeability in CHO cells as a mechanism of resistance to colchicine. J Cell Physiol. 1974 Feb;83(1):103–116. doi: 10.1002/jcp.1040830114. [DOI] [PubMed] [Google Scholar]
  35. McBurney M. W., Whitmore G. F. Isolation and biochemical characterization of folate deficient mutants of Chinese hamster cells. Cell. 1974 Jul;2(3):173–182. doi: 10.1016/0092-8674(74)90091-9. [DOI] [PubMed] [Google Scholar]
  36. Nunberg J. H., Kaufman R. J., Schimke R. T., Urlaub G., Chasin L. A. Amplified dihydrofolate reductase genes are localized to a homogeneously staining region of a single chromosome in a methotrexate-resistant Chinese hamster ovary cell line. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5553–5556. doi: 10.1073/pnas.75.11.5553. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. O'Hara C. J., Price G. B. A monoclonal antibody demonstrating specificity for drug-resistance cells. Immunol Lett. 1982 Jul;5(1):15–18. doi: 10.1016/0165-2478(82)90084-0. [DOI] [PubMed] [Google Scholar]
  38. Pellicer A., Wigler M., Axel R., Silverstein S. The transfer and stable integration of the HSV thymidine kinase gene into mouse cells. Cell. 1978 May;14(1):133–141. doi: 10.1016/0092-8674(78)90308-2. [DOI] [PubMed] [Google Scholar]
  39. Perucho M., Hanahan D., Wigler M. Genetic and physical linkage of exogenous sequences in transformed cells. Cell. 1980 Nov;22(1 Pt 1):309–317. doi: 10.1016/0092-8674(80)90178-6. [DOI] [PubMed] [Google Scholar]
  40. Peterson R. H., Biedler J. L. Plasma membrane proteins and glycoproteins from Chinese hamster cells sensitive and resistant to actinomycin D. J Supramol Struct. 1978;9(3):289–298. doi: 10.1002/jss.400090302. [DOI] [PubMed] [Google Scholar]
  41. Ringold G., Dieckmann B., Lee F. Co-expression and amplification of dihydrofolate reductase cDNA and the Escherichia coli XGPRT gene in Chinese hamster ovary cells. J Mol Appl Genet. 1981;1(3):165–175. [PubMed] [Google Scholar]
  42. Robins D. M., Ripley S., Henderson A. S., Axel R. Transforming DNA integrates into the host chromosome. Cell. 1981 Jan;23(1):29–39. doi: 10.1016/0092-8674(81)90267-1. [DOI] [PubMed] [Google Scholar]
  43. Sabourin C. L., Bates P. F., Glatzer L., Chang C. C., Trosko J. E., Boezi J. A. Selection of aphidicolin-resistant CHO cells with altered levels of ribonucleotide reductase. Somatic Cell Genet. 1981 Mar;7(2):255–268. doi: 10.1007/BF01567661. [DOI] [PubMed] [Google Scholar]
  44. Scangos G. A., Huttner K. M., Juricek D. K., Ruddle F. H. Deoxyribonucleic acid-mediated gene transfer in mammalian cells: molecular analysis of unstable transformants and their progression to stability. Mol Cell Biol. 1981 Feb;1(2):111–120. doi: 10.1128/mcb.1.2.111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. Scangos G. A., Huttner K. M., Silverstein S., Ruddle F. H. Molecular analysis of chromosome-mediated gene transfer. Proc Natl Acad Sci U S A. 1979 Aug;76(8):3987–3990. doi: 10.1073/pnas.76.8.3987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Schimke R. T., Brown P. C., Kaufman R. J., McGrogan M., Slate D. L. Chromosomal and extrachromosomal localization of amplified dihydrofolate reductase genes in cultured mammalian cells. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):785–797. doi: 10.1101/sqb.1981.045.01.097. [DOI] [PubMed] [Google Scholar]
  47. Skipper H. E., Hutchison D. J., Schabel F. M., Jr, Schmidt L. H., Goldin A., Brockman R. W., Venditti J. M., Wodinsky I. A quick reference chart on cross resistance between anticancer patients. Cancer Chemother Rep. 1972 Aug;56(4):493–498. [PubMed] [Google Scholar]
  48. Sonoda S., Schlamowitz M. Studies of 125I trace labeling of immunoglobulin G by chloramine-T. Immunochemistry. 1970 Nov;7(11):885–898. doi: 10.1016/0019-2791(70)90051-0. [DOI] [PubMed] [Google Scholar]
  49. Stanners C. P., Eliceiri G. L., Green H. Two types of ribosome in mouse-hamster hybrid cells. Nat New Biol. 1971 Mar 10;230(10):52–54. doi: 10.1038/newbio230052a0. [DOI] [PubMed] [Google Scholar]
  50. Stanners C. P., Lam T., Chamberlain J. W., Stewart S. S., Price G. B. Cloning of a functional gene responsible for the expression of a cell surface antigen correlated with human chronic lymphocytic leukemia. Cell. 1981 Nov;27(1 Pt 2):211–221. doi: 10.1016/0092-8674(81)90375-5. [DOI] [PubMed] [Google Scholar]
  51. Su T. S., Bock H. G., O'Brien W. E., Beaudet A. L. Cloning of cDNA for argininosuccinate synthetase mRNA and study of enzyme overproduction in a human cell line. J Biol Chem. 1981 Nov 25;256(22):11826–11831. [PubMed] [Google Scholar]
  52. Terzi M. Chromosomal variation and the origin of drug-resistant mutants in mammalian cell lines. Proc Natl Acad Sci U S A. 1974 Dec;71(12):5027–5031. doi: 10.1073/pnas.71.12.5027. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Towbin H., Staehelin T., Gordon J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4350–4354. doi: 10.1073/pnas.76.9.4350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Wahl G. M., Padgett R. A., Stark G. R. Gene amplification causes overproduction of the first three enzymes of UMP synthesis in N-(phosphonacetyl)-L-aspartate-resistant hamster cells. J Biol Chem. 1979 Sep 10;254(17):8679–8689. [PubMed] [Google Scholar]
  55. Wigler M., Pellicer A., Silverstein S., Axel R., Urlaub G., Chasin L. DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci U S A. 1979 Mar;76(3):1373–1376. doi: 10.1073/pnas.76.3.1373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Wigler M., Perucho M., Kurtz D., Dana S., Pellicer A., Axel R., Silverstein S. Transformation of mammalian cells with an amplifiable dominant-acting gene. Proc Natl Acad Sci U S A. 1980 Jun;77(6):3567–3570. doi: 10.1073/pnas.77.6.3567. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES