Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1984 Oct;4(10):2017–2022. doi: 10.1128/mcb.4.10.2017

Introns excised from immunoglobulin pre-mRNAs exist as discrete species.

C Coleclough, D Wood
PMCID: PMC369018  PMID: 6438493

Abstract

We have discovered a new class of transcripts of immunoglobulin kappa genes in RNA from B-lineage cells. These transcripts have the properties predicted of free introns excised from kappa mRNA precursors. RNA extracted from populations of normal mouse spleen cells polyclonally activated with B-cell mitogens contains four such transcripts; their electrophoretic mobilities correspond to the distances between the intron-exon boundary of the C kappa region and the four useable J kappa elements, and their relative abundance reflects the relative usage of those J segments. Analysis of RNA from monoclonal kappa-expressing cell lines reveals that one active locus produces one free intron, its size determined by which J element is used in that locus. Apart from their distinctive size, free introns are identified by their lack of polyadenylic acid and their ability to hybridize to cloned probes containing intron sequences, but not to the adjacent V or C exonic sequences. They have a characteristic subcellular distribution, being extractable from nuclei by treatment with nonionic detergent; nuclei thus treated retain most of the primary mRNA precursors, but few of the free introns. A high level of kappa gene expression is not a prerequisite of a cell containing detectable free kappa introns; the lymphoma 38c has only 5% or less of the amount of kappa mRNA that the plasmacytoma MCP-11 contains, yet the ratio of free intron to mRNA precursor is about the same in both cell lines. When analyzed by electrophoretic separation of sufficient resolving power, the free introns due to a single kappa locus resolve into two discrete species. We consider that this most likely reflects the existence of two conformers of the intron, one presumably a covalently intact circle and the other linear molecule.

Full text

PDF
2021

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Berget S. M., Sharp P. A. Structure of late adenovirus 2 heterogeneous nuclear RNA. J Mol Biol. 1979 Apr 25;129(4):547–565. doi: 10.1016/0022-2836(79)90468-6. [DOI] [PubMed] [Google Scholar]
  2. Bergman Y., Haimovich J. Characterization of a carcinogen-induced murine B lymphocyte cell line of C3H/eB origin. Eur J Immunol. 1977 Jul;7(7):413–417. doi: 10.1002/eji.1830070702. [DOI] [PubMed] [Google Scholar]
  3. Choi E., Kuehl M., Wall R. RNA splicing generates a variant light chain from an aberrantly rearranged kappa gene. Nature. 1980 Aug 21;286(5775):776–779. doi: 10.1038/286776a0. [DOI] [PubMed] [Google Scholar]
  4. Coleclough C., Cooper D., Perry R. P. Rearrangement of immunoglobulin heavy chain genes during B-lymphocyte development as revealed by studies of mouse plasmacytoma cells. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1422–1426. doi: 10.1073/pnas.77.3.1422. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Coleclough C., Perry R. P., Karjalainen K., Weigert M. Aberrant rearrangements contribute significantly to the allelic exclusion of immunoglobulin gene expression. Nature. 1981 Apr 2;290(5805):372–378. doi: 10.1038/290372a0. [DOI] [PubMed] [Google Scholar]
  6. Crick F. Split genes and RNA splicing. Science. 1979 Apr 20;204(4390):264–271. doi: 10.1126/science.373120. [DOI] [PubMed] [Google Scholar]
  7. De Robertis E. M., Black P., Nishikura K. Intranuclear location of the tRNA splicing enzymes. Cell. 1981 Jan;23(1):89–93. doi: 10.1016/0092-8674(81)90273-7. [DOI] [PubMed] [Google Scholar]
  8. Grivell L. A., Borst P. Mitochondrial mosaics-maturases on the move. Nature. 1982 Aug 19;298(5876):703–704. doi: 10.1038/298703a0. [DOI] [PubMed] [Google Scholar]
  9. Kelley D. E., Coleclough C., Perry R. P. Functional significance and evolutionary development of the 5'-terminal regions of immunoglobulin variable-region genes. Cell. 1982 Jun;29(2):681–689. doi: 10.1016/0092-8674(82)90184-2. [DOI] [PubMed] [Google Scholar]
  10. Kuehl W. M., Kaplan B. A., Scharff M. D. Characterization of light chain and light chain constant region fragment mRNAs in MPC 11 mouse myeloma cells and variants. Cell. 1975 Jun;5(2):139–147. doi: 10.1016/0092-8674(75)90022-7. [DOI] [PubMed] [Google Scholar]
  11. Lerner M. R., Boyle J. A., Mount S. M., Wolin S. L., Steitz J. A. Are snRNPs involved in splicing? Nature. 1980 Jan 10;283(5743):220–224. doi: 10.1038/283220a0. [DOI] [PubMed] [Google Scholar]
  12. Max E. E., Maizel J. V., Jr, Leder P. The nucleotide sequence of a 5.5-kilobase DNA segment containing the mouse kappa immunoglobulin J and C region genes. J Biol Chem. 1981 May 25;256(10):5116–5120. [PubMed] [Google Scholar]
  13. Mount S. M., Pettersson I., Hinterberger M., Karmas A., Steitz J. A. The U1 small nuclear RNA-protein complex selectively binds a 5' splice site in vitro. Cell. 1983 Jun;33(2):509–518. doi: 10.1016/0092-8674(83)90432-4. [DOI] [PubMed] [Google Scholar]
  14. Perry R. P., Coleclough C., Weigert M. Reorganization and expression of immunoglobulin genes: status of allelic elements. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):925–933. doi: 10.1101/sqb.1981.045.01.109. [DOI] [PubMed] [Google Scholar]
  15. Perry R. P., Kelley D. E., Coleclough C., Seidman J. G., Leder P., Tonegawa S., Matthyssens G., Weigert M. Transcription of mouse kappa chain genes: implications for allelic exclusion. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1937–1941. doi: 10.1073/pnas.77.4.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Rigby P. W., Dieckmann M., Rhodes C., Berg P. Labeling deoxyribonucleic acid to high specific activity in vitro by nick translation with DNA polymerase I. J Mol Biol. 1977 Jun 15;113(1):237–251. doi: 10.1016/0022-2836(77)90052-3. [DOI] [PubMed] [Google Scholar]
  17. Rogers J., Wall R. A mechanism for RNA splicing. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1877–1879. doi: 10.1073/pnas.77.4.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Schibler U., Marcu K. B., Perry R. P. The synthesis and processing of the messenger RNAs specifying heavy and light chain immunoglobulins in MPC-11 cells. Cell. 1978 Dec;15(4):1495–1509. doi: 10.1016/0092-8674(78)90072-7. [DOI] [PubMed] [Google Scholar]
  19. Schibler U., Wyler T., Hagenbüchle O. Changes in size and secondary structure of the ribosomal transcription unit during vertebrate evolution. J Mol Biol. 1975 May 25;94(3):503–517. doi: 10.1016/0022-2836(75)90217-x. [DOI] [PubMed] [Google Scholar]
  20. Schnell H., Steinmetz M., Zachau H. G., Schechter I. An unusual translocation of immunoglobulin gene segments in variants of the mouse myeloma MPC11. Nature. 1980 Jul 10;286(5769):170–173. doi: 10.1038/286170a0. [DOI] [PubMed] [Google Scholar]
  21. Seidman J. G., Leder P. A mutant immunoglobulin light chain is formed by aberrant DNA- and RNA-splicing events. Nature. 1980 Aug 21;286(5775):779–783. doi: 10.1038/286779a0. [DOI] [PubMed] [Google Scholar]
  22. Thomas P. S. Hybridization of denatured RNA and small DNA fragments transferred to nitrocellulose. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5201–5205. doi: 10.1073/pnas.77.9.5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Ness B. G., Weigert M., Coleclough C., Mather E. L., Kelley D. E., Perry R. P. Transcription of the unrearranged mouse C kappa locus: sequence of the initiation region and comparison of activity with a rearranged V kappa-C kappa gene. Cell. 1981 Dec;27(3 Pt 2):593–602. doi: 10.1016/0092-8674(81)90401-3. [DOI] [PubMed] [Google Scholar]
  24. Yang V. W., Lerner M. R., Steitz J. A., Flint S. J. A small nuclear ribonucleoprotein is required for splicing of adenoviral early RNA sequences. Proc Natl Acad Sci U S A. 1981 Mar;78(3):1371–1375. doi: 10.1073/pnas.78.3.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES