Skip to main content
Molecular and Cellular Biology logoLink to Molecular and Cellular Biology
. 1982 Jan;2(1):66–75. doi: 10.1128/mcb.2.1.66

Conditions necessary for inhibition of protein synthesis and production of cytopathic effect in Aedes albopictus cells infected with vesicular stomatitis virus.

S Gillies, V Stollar
PMCID: PMC369753  PMID: 6287221

Abstract

The relationship between the development of cytopathic effect (CPE) and the inhibition of host macromolecular synthesis was examined in a CPE-susceptible cloned line of Aedes albopictus cells after infection with vesicular stomatitis virus. To induce rapid and maximal CPE, two conditions were required: (i) presence of serum in the medium and (ii) incubation at 34 degrees C rather than at 28 degrees C. In the absence of serum, incubation of infected cultures at 34 degrees C resulted in a significant increase in viral protein and RNA synthesis compared with that observed at 28 degrees C. However, when serum was present in the medium, by 6 h after infection protein synthesis (both host and viral) was markedly inhibited when infected cells were maintained at 34 degrees C. RNA synthesis (host and viral) was also inhibited in vesicular stomatitis virus-infected cells maintained at 34 degrees C with serum, but somewhat more slowly than protein synthesis. Examination of polysome patterns indicated that when infected cultures were maintained under conditions which predispose to CPE, more than half of the ribosomes existed as monosomes, suggesting that protein synthesis was being inhibited at the level of initiation. In addition, the phosphorylation of one (or two) polysome-associated proteins was reduced when protein synthesis was inhibited. Our findings indicate a strong correlation between virus-induced CPE in the LT-C7 clone of A. albopictus cells and the inhibition of protein synthesis. Although the mechanism of the serum effect is not understood, incubation at 34 degrees C probably predisposes to CPE and inhibition of protein synthesis by increasing the amount of viral gene products made.

Full text

PDF
68

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Gillies S., Stollar V. Biochemical characterization of vesicular stomatitis virus-infected Aedes albopictus cells deprived of methionine. Virology. 1981 Jul 15;112(1):318–327. doi: 10.1016/0042-6822(81)90637-1. [DOI] [PubMed] [Google Scholar]
  2. Gillies S., Stollar V. Generation of defective interfering particles of vesicular stomatitis virus in Aedes albopictus cells. Virology. 1980 Dec;107(2):497–508. doi: 10.1016/0042-6822(80)90316-5. [DOI] [PubMed] [Google Scholar]
  3. Gillies S., Stollar V. The production of high yields of infectious vesicular stomatitis virus in A. albopictus cells and comparisons with replication in BHK-21 cells. Virology. 1980 Dec;107(2):509–513. doi: 10.1016/0042-6822(80)90317-7. [DOI] [PubMed] [Google Scholar]
  4. Lodish H. F., Porter M. Translational control of protein synthesis after infection by vesicular stomatitis virus. J Virol. 1980 Dec;36(3):719–733. doi: 10.1128/jvi.36.3.719-733.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Marcus P. I., Sekellick M. J., Johnson L. D., Lazzarini R. A. Cell killing by viruses. V. Transcribing defective interfering particles of vesicular stomatitis virus function as cell-killing particles. Virology. 1977 Oct 1;82(1):242–246. doi: 10.1016/0042-6822(77)90048-4. [DOI] [PubMed] [Google Scholar]
  6. Marvaldi J. L., Lucas-Lenard J., Sekellick M. J., Marcus P. I. Cell killing by viruses. IV. Cell killing and protein synthesis inhibition by vesicular stomatitis virus require the same gene functions. Virology. 1977 Jun 15;79(2):267–280. doi: 10.1016/0042-6822(77)90354-3. [DOI] [PubMed] [Google Scholar]
  7. Marvaldi J., Sekellick M. J., Marcus P. I., Lucas-Lenard J. Inhibition of mouse L cell protein synthesis by ultraviolet-irradiated vesicular stomatitis virus requires viral transcription. Virology. 1978 Jan;84(1):127–133. doi: 10.1016/0042-6822(78)90224-6. [DOI] [PubMed] [Google Scholar]
  8. Mento S. J., Stollar V. Effect of ouabain on sindbis virus replication in ouabain-sensitive and ouabain-resistant Aedes albopictus cells (Singh). Virology. 1978 Jun 1;87(1):58–65. doi: 10.1016/0042-6822(78)90157-5. [DOI] [PubMed] [Google Scholar]
  9. Moyer S. A., Summers D. F. Phosphorylation of vesicular stomatitis virus in vivo and in vitro. J Virol. 1974 Feb;13(2):455–465. doi: 10.1128/jvi.13.2.455-465.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Sarver N., Stollar V. Sindbis virus-induced cytopathic effect in clones of Aedes albopictus (Singh) cells. Virology. 1977 Jul 15;80(2):390–400. doi: 10.1016/s0042-6822(77)80014-7. [DOI] [PubMed] [Google Scholar]
  11. Skup D., Millward S. Reovirus-induced modification of cap-dependent translation in infected L cells. Proc Natl Acad Sci U S A. 1980 Jan;77(1):152–156. doi: 10.1073/pnas.77.1.152. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Stanners C. P., Francoeur A. M., Lam T. Analysis of VSV mutant with attenuated cytopathogenicity: mutation in viral function, P, for inhibition of protein synthesis. Cell. 1977 Jun;11(2):273–281. doi: 10.1016/0092-8674(77)90044-7. [DOI] [PubMed] [Google Scholar]
  13. Thomas G., Siegmann M., Kubler A. M., Gordon J., Jimenez de Asua L. Regulation of 40S ribosomal protein S6 phosphorylation in Swiss mouse 3T3 cells. Cell. 1980 Apr;19(4):1015–1023. doi: 10.1016/0092-8674(80)90092-6. [DOI] [PubMed] [Google Scholar]
  14. Tooker P., Kennedy S. I. Semliki Forest virus multiplication in clones of Aedes albopictus cells. J Virol. 1981 Feb;37(2):589–600. doi: 10.1128/jvi.37.2.589-600.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Trachsel H., Sonenberg N., Shatkin A. J., Rose J. K., Leong K., Bergmann J. E., Gordon J., Baltimore D. Purification of a factor that restores translation of vesicular stomatitis virus mRNA in extracts from poliovirus-infected HeLa cells. Proc Natl Acad Sci U S A. 1980 Feb;77(2):770–774. doi: 10.1073/pnas.77.2.770. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Molecular and Cellular Biology are provided here courtesy of Taylor & Francis

RESOURCES