Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1982 Sep;70(3):505–517. doi: 10.1172/JCI110642

Effects of ion substitution on bile acid-dependent and -independent bile formation by rat liver.

R W Van Dyke, J E Stephens, B F Scharschmidt
PMCID: PMC370251  PMID: 6286725

Abstract

To characterize the transport mechanisms responsible for formation of canalicular bile, we have examined the effects of ion substitution on bile acid-dependent and bile acid-independent bile formation by the isolated perfused rat liver. Complete replacement of perfusate sodium with choline and lithium abolished taurocholate-induced choleresis and reduced biliary taurocholate output by greater than 70%. Partial replacement of perfusate sodium (25 of 128 mM) by choline reduced bile acid-independent bile formation by 30% and replacement of the remaining sodium (103 mM) by choline reduced bile acid-independent bile formation by an additional 64%. In contrast, replacement of the remaining sodium (103 mM) by lithium reduced bile acid-independent bile formation by only an additional 20%, while complete replacement of sodium (128 mM) by lithium reduced bile formation by only 17%, and lithium replaced sodium as the predominant biliary cation. Replacement of perfusate bicarbonate by Tricine, a zwitterionic amino acid buffer, decreased bile acid-independent bile formation by greater than or equal to 50% and decreased biliary bicarbonate output by approximately 60%, regardless of the accompanying cation. In separate experiments, replacement of sodium by lithium essentially abolished Na,K-ATPase activity measured either as ouabain-suppressible ATP hydrolysis in rat liver or kidney homogenates, or as ouabain-suppressible 86Rb uptake by cultured rat hepatocytes. These studies indicate that bile acid(taurocholate)-dependent bile formation by rat liver exhibits a specific requirement for sodium, a finding probably attributable to the role(s) of sodium in hepatic sodium-coupled taurocholate uptake and/or in maintenance of Na,K-ATPase activity. The surprising finding that bile acid-independent bile formation was substantially unaltered by complete replacement of sodium with the permeant cation lithium does not appear to be explained by Na,K-ATPase-mediated lithium transport. Although alternative interpretations exist, this observation is consistent with the hypothesis that much of basal bile acid-independent bile formation is attributable to an ion pump other than Na,K-ATPase, which directly or indirectly mediates bicarbonate transport.

Full text

PDF
505

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akera T., Yamamoto S., Temma K., Kim D. H., Brody T. M. Is ouabain-sensitive rubidium or potassium uptake a measure of sodium pump activity in isolated cardiac muscle? Biochim Biophys Acta. 1981 Feb 6;640(3):779–790. doi: 10.1016/0005-2736(81)90108-5. [DOI] [PubMed] [Google Scholar]
  2. Anwer M. S., Hegner D. Effect of Na on bile acid uptake by isolated rat hepatocytes. Evidence for a heterogeneous system. Hoppe Seylers Z Physiol Chem. 1978 Feb;359(2):181–192. [PubMed] [Google Scholar]
  3. Aronson P. S. Identifying secondary active solute transport in epithelia. Am J Physiol. 1981 Jan;240(1):F1–11. doi: 10.1152/ajprenal.1981.240.1.F1. [DOI] [PubMed] [Google Scholar]
  4. Avner D. L., Lee R. G., Berenson M. M. Protoporphyrin-induced cholestasis in the isolated in situ perfused rat liver. J Clin Invest. 1981 Feb;67(2):385–394. doi: 10.1172/JCI110046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. BRAUER R. W., LEONG G. F., HOLLOWAY R. J. Mechanics of bile secretion; effect of perfusion pressure and temperature on bile flow and bile secretion pressure. Am J Physiol. 1954 Apr;177(1):103–112. doi: 10.1152/ajplegacy.1954.177.1.103. [DOI] [PubMed] [Google Scholar]
  6. BRAUER R. W., PESSOTTI R. L. The effect of choleretic and of hydrocholeretic agents on bile flow and bile solids in the isolated perfused liver. Science. 1952 Feb 8;115(2980):142–143. doi: 10.1126/science.115.2980.142. [DOI] [PubMed] [Google Scholar]
  7. Bakkeren J. A., Bonting S. L. Studies on (Na+-K+)-activated ATPase. XXI. Changes in (Na+-K+)-activated ATPase activity and ouabain-sensitive 86Rb+ uptake rate in regenerating rat liver. Biochim Biophys Acta. 1968 Apr 29;150(3):467–472. doi: 10.1016/0005-2736(68)90146-6. [DOI] [PubMed] [Google Scholar]
  8. Balabaud C., Kron K. A., Gumucio J. J. The assessment of the bile salt-nondependent fraction of canalicular bile water in the rat. J Lab Clin Med. 1977 Feb;89(2):393–399. [PubMed] [Google Scholar]
  9. Beaugé L. Activation by lithium ions of the inside sodium sites in (Na+ + K+)-ATPase. Biochim Biophys Acta. 1978 Dec 8;527(2):472–484. doi: 10.1016/0005-2744(78)90361-3. [DOI] [PubMed] [Google Scholar]
  10. Bichara M., Paillard M., Leviel F., Gardin J. P. Hydrogen transport in rabbit kidney proximal tubules--Na:H exchange. Am J Physiol. 1980 Jun;238(6):F445–F451. doi: 10.1152/ajprenal.1980.238.6.F445. [DOI] [PubMed] [Google Scholar]
  11. Bissell D. M., Hammaker L. E., Meyer U. A. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. I. Functional studies. J Cell Biol. 1973 Dec;59(3):722–734. doi: 10.1083/jcb.59.3.722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bissell D. M. Study of hepatocyte function in cell culture. Prog Liver Dis. 1976;5:69–82. [PubMed] [Google Scholar]
  13. Blitzer B. L., Boyer J. L. Cytochemical localization of Na+, K+-ATPase in the rat hepatocyte. J Clin Invest. 1978 Nov;62(5):1104–1108. doi: 10.1172/JCI109216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Boyer J. L. Canalicular bile formation in the isolated perfused rat liver. Am J Physiol. 1971 Oct;221(4):1156–1163. doi: 10.1152/ajplegacy.1971.221.4.1156. [DOI] [PubMed] [Google Scholar]
  15. Boyer J. L., Klatskin G. Canalicular bile flow and bile secretory pressure. Evidence for a non-bile salt dependent fraction in the isolated perfused rat liver. Gastroenterology. 1970 Dec;59(6):853–859. [PubMed] [Google Scholar]
  16. Boyer J. L. New concepts of mechanisms of hepatocyte bile formation. Physiol Rev. 1980 Apr;60(2):303–326. doi: 10.1152/physrev.1980.60.2.303. [DOI] [PubMed] [Google Scholar]
  17. Boyer J. L., Reno D. Properties of (Na+ plus K+)-activated ATPase in rat liver plasma membranes enriched with bile canaliculi. Biochim Biophys Acta. 1975 Aug 5;401(1):59–72. doi: 10.1016/0005-2736(75)90341-7. [DOI] [PubMed] [Google Scholar]
  18. Boyer J. L., Scheig R. L., Klatskin G. The effect of sodium taurocholate on the hepatic metabolism of sulfobromophthalein sodium (BSP). The role of bile flow. J Clin Invest. 1970 Feb;49(2):206–215. doi: 10.1172/JCI106229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Bradley S. E., Herz R. Permselectivity of biliary canalicular membrane in rats: clearance probe analysis. Am J Physiol. 1978 Nov;235(5):E570–E576. doi: 10.1152/ajpendo.1978.235.5.E570. [DOI] [PubMed] [Google Scholar]
  20. Davis R. A., Kern F., Jr, Showalter R., Sutherland E., Sinensky M., Simon F. R. Alterations of hepatic Na+,K+-atpase and bile flow by estrogen: effects on liver surface membrane lipid structure and function. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4130–4134. doi: 10.1073/pnas.75.9.4130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Dietmaier A., Gasser R., Graf J., Peterlik M. Investigations on the sodium dependence of bile acid fluxes in the isolated perfused rat liver. Biochim Biophys Acta. 1976 Aug 4;443(1):81–91. doi: 10.1016/0005-2736(76)90492-2. [DOI] [PubMed] [Google Scholar]
  22. Dixon T. E., Al-Awqati Q. Urinary acidification in turtle bladder is due to a reversible proton-translocating ATPase. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3135–3138. doi: 10.1073/pnas.76.7.3135. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Dunham P. B., Senyk O. Lithium efflux through the Na/K pump in human erythrocytes. Proc Natl Acad Sci U S A. 1977 Jul;74(7):3099–3103. doi: 10.1073/pnas.74.7.3099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Eagle H. Buffer combinations for mammalian cell culture. Science. 1971 Oct 29;174(4008):500–503. doi: 10.1126/science.174.4008.500. [DOI] [PubMed] [Google Scholar]
  25. Erlinger S., Dhumeaux D., Benhamou J. P. Effect on bile formation of inhibitors of sodium transport. Nature. 1969 Sep 20;223(5212):1276–1277. doi: 10.1038/2231276a0. [DOI] [PubMed] [Google Scholar]
  26. Erlinger S. Hepatocyte bile secretion: current views and controversies. Hepatology. 1981 Jul-Aug;1(4):352–359. doi: 10.1002/hep.1840010413. [DOI] [PubMed] [Google Scholar]
  27. Fagan J. B., Racker E. Determinants of glycolytic rate in normal and transformed chick embryo fibroblasts. Cancer Res. 1978 Mar;38(3):749–758. [PubMed] [Google Scholar]
  28. Forker E. L. The effect of estrogen on bile formation in the rat. J Clin Invest. 1969 Apr;48(4):654–663. doi: 10.1172/JCI106023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Foster D. L., Fillingame R. H. Energy-transducing H+-ATPase of Escherichia coli. Purification, reconstitution, and subunit composition. J Biol Chem. 1979 Sep 10;254(17):8230–8236. [PubMed] [Google Scholar]
  30. Gardner R. S. The use of tricine buffer in animal tissue cultures. J Cell Biol. 1969 Jul;42(1):320–321. doi: 10.1083/jcb.42.1.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Goldman M. R., Wolk S. W., Rutlen D. L., Powell W. J., Jr Effect of ouabain on total vascular capacity in the dog. J Clin Invest. 1982 Jan;69(1):175–184. doi: 10.1172/JCI110429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Gollan J., Hammaker L., Licko V., Schmid R. Bilirubin kinetics in intact rats and isolated perfused liver. Evidence for hepatic deconjugation of bilirubin glucuronides. J Clin Invest. 1981 Apr;67(4):1003–1015. doi: 10.1172/JCI110111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Good N. E., Winget G. D., Winter W., Connolly T. N., Izawa S., Singh R. M. Hydrogen ion buffers for biological research. Biochemistry. 1966 Feb;5(2):467–477. doi: 10.1021/bi00866a011. [DOI] [PubMed] [Google Scholar]
  34. Goodman M. N., Parrilla R., Toews C. J. Influence of fluorocarbon emulsions on hepatic metabolism in perfused rat liver. Am J Physiol. 1973 Dec;225(6):1384–1388. doi: 10.1152/ajplegacy.1973.225.6.1384. [DOI] [PubMed] [Google Scholar]
  35. Graf J., Peterlik M. Ouabain-mediated sodium uptake and bile formation by isolated perfused rat liver. Am J Physiol. 1976 Apr;230(4):876–885. doi: 10.1152/ajplegacy.1976.230.4.876. [DOI] [PubMed] [Google Scholar]
  36. Hamilton L. J., Kaplan J. G. Flux of 86Rb in activated human lymphocytes. Can J Biochem. 1977 Jul;55(7):774–778. doi: 10.1139/o77-113. [DOI] [PubMed] [Google Scholar]
  37. Hamilton R. L., Berry M. N., Williams M. C., Severinghaus E. M. A simple and inexpensive membrane "lung" for small organ perfusion. J Lipid Res. 1974 Mar;15(2):182–186. [PubMed] [Google Scholar]
  38. Hanks J. B., Meyers W. C., Wellman C. L., Hill R. C., Jones R. S. The effect of cell-free and erythrocyte-containing perfusion in rat livers. J Surg Res. 1980 Aug;29(2):149–160. doi: 10.1016/0022-4804(80)90033-5. [DOI] [PubMed] [Google Scholar]
  39. Hardison W. G., Wood C. A. Importance of bicarbonate in bile salt independent fraction of bile flow. Am J Physiol. 1978 Aug;235(2):E158–E164. doi: 10.1152/ajpendo.1978.235.2.E158. [DOI] [PubMed] [Google Scholar]
  40. Ihlenfeldt M. J. Stimulation of Rb+ transport by glucagon in isolated rat hepatocytes. J Biol Chem. 1981 Mar 10;256(5):2213–2218. [PubMed] [Google Scholar]
  41. Javitt N. B. Hepatic bile formation. (Second of two parts). N Engl J Med. 1976 Dec 30;295(27):1511–1516. doi: 10.1056/NEJM197612302952705. [DOI] [PubMed] [Google Scholar]
  42. Kakis G., Yousef I. M. Pathogenesis of lithocholate- and taurolithocholate-induced intrahepatic cholestasis in rats. Gastroenterology. 1978 Oct;75(4):595–607. [PubMed] [Google Scholar]
  43. Keefee E. B., Scharschmidt B. F., Blankenship N. M., Ockner R. K. Studies of relationship among bile flow, liver plasma membrane NaK-ATPase, and membrane microviscosity in the rat. J Clin Invest. 1979 Dec;64(6):1590–1598. doi: 10.1172/JCI109620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Kinsella J. L., Aronson P. S. Properties of the Na+-H+ exchanger in renal microvillus membrane vesicles. Am J Physiol. 1980 Jun;238(6):F461–F469. doi: 10.1152/ajprenal.1980.238.6.F461. [DOI] [PubMed] [Google Scholar]
  45. Knodell R. G. Alterations in bile flow and Na+K+ biliary excretion induced by theophylline and ethacrynic acid. Proc Soc Exp Biol Med. 1978 Feb;157(2):306–311. doi: 10.3181/00379727-157-40043. [DOI] [PubMed] [Google Scholar]
  46. Krone W., Huttner W. B., Kampf S. C., Rittich B., Seitz H. J., Tarnowski W. Long-term perfusion of the isolated rat liver: maintenance of its functional state by use of a fluorocarbon emulsion. Biochim Biophys Acta. 1974 Nov 4;372(1):55–71. doi: 10.1016/0304-4165(74)90073-7. [DOI] [PubMed] [Google Scholar]
  47. Kushlan M. C., Gollan J. L., Ma W. L., Ockner R. K. Sex differences in hepatic uptake of long chain fatty acids in single-pass perfused rat liver. J Lipid Res. 1981 Mar;22(3):431–436. [PubMed] [Google Scholar]
  48. LOVE W. D., BURCH G. E. A comparison of potassium 42, rubidium 86, and cesium 134 as tracers of potassium in the study of cation metabolism of human erythrocytes in vitro. J Lab Clin Med. 1953 Mar;41(3):351–362. [PubMed] [Google Scholar]
  49. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  50. Latham P. S., Kashgarian M. The ultrastructural localization of transport ATPase in the rat liver at non-bile canalicular plasma membranes. Gastroenterology. 1979 May;76(5 Pt 1):988–996. [PubMed] [Google Scholar]
  51. Layden T. J., Boyer J. L. The effect of thyroid hormone on bile salt-independent bile flow and Na+, K+ -ATPase activity in liver plasma membranes enriched in bile canaliculi. J Clin Invest. 1976 Apr;57(4):1009–1018. doi: 10.1172/JCI108342. [DOI] [PMC free article] [PubMed] [Google Scholar]
  52. Layden T. J., Elias E., Boyer J. L. Bile formation in the rat: the role of the paracellular shunt pathway. J Clin Invest. 1978 Dec;62(6):1375–1385. doi: 10.1172/JCI109258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. MOORE E. W., DIETSCHY J. M. NA AND K ACTIVITY COEFFICIENTS IN BILE AND BILE SALTS DETERMINED BY GLASS ELECTRODES. Am J Physiol. 1964 May;206:1111–1117. doi: 10.1152/ajplegacy.1964.206.5.1111. [DOI] [PubMed] [Google Scholar]
  54. Maizels M. Effect of sodium content on sodium efflux from human red cells suspended in sodium-free media containing potassium, rubidium, caesium or lithium chloride. J Physiol. 1968 Apr;195(3):657–679. doi: 10.1113/jphysiol.1968.sp008481. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. McKinney T. D., Burg M. B. Bicarbonate absorption by rabbit cortical collecting tubules in vitro. Am J Physiol. 1978 Feb;234(2):F141–F145. doi: 10.1152/ajprenal.1978.234.2.F141. [DOI] [PubMed] [Google Scholar]
  56. Miner P. B., Jr, Sutherland E., Simon F. R. Regulation of hepatic sodium plus potassium-activated adenossine triphosphatase activity by glucocorticoids in the rat. Gastroenterology. 1980 Aug;79(2):212–221. [PubMed] [Google Scholar]
  57. Nagel W. Influence of lithium upon the intracellular potential of frog skin epithelium. J Membr Biol. 1977 Dec 15;37(3-4):347–359. doi: 10.1007/BF01940939. [DOI] [PubMed] [Google Scholar]
  58. Recktenwald E., Hess B. Allosteric influence of anions on mitochondrial ATPase of yeast. FEBS Lett. 1977 Apr 1;76(1):25–28. doi: 10.1016/0014-5793(77)80113-0. [DOI] [PubMed] [Google Scholar]
  59. Reichen J., Paumgartner G. Relationship between bile flow and Na+, K+-adenosinetriphosphatase in liver plasma membranes enriched in bile canaliculi. J Clin Invest. 1977 Aug;60(2):429–434. doi: 10.1172/JCI108792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Reichen J., Paumgartner G. Uptake of bile acids by perfused rat liver. Am J Physiol. 1976 Sep;231(3):734–742. doi: 10.1152/ajplegacy.1976.231.3.734. [DOI] [PubMed] [Google Scholar]
  61. Rodland K. D., Dunham P. B. Kinetics of lithium efflux through the (Na,K)-pump of human erythrocytes. Biochim Biophys Acta. 1980 Nov 4;602(2):376–388. doi: 10.1016/0005-2736(80)90318-1. [DOI] [PubMed] [Google Scholar]
  62. Ros E., Small D. M., Carey M. C. Effects of chlorpromazine hydrochloride on bile salt synthesis, bile formation and biliary lipid secretion in the rhesus monkey: a model for chlorpromazine-induced cholestasis. Eur J Clin Invest. 1979 Feb;9(1):29–41. doi: 10.1111/j.1365-2362.1979.tb01664.x. [DOI] [PubMed] [Google Scholar]
  63. SCHANKER L. S., HOGBEN C. A. Biliary excretion of inulin, sucrose, and mannitol: analysis of bile formation. Am J Physiol. 1961 May;200:1087–1090. doi: 10.1152/ajplegacy.1961.200.5.1087. [DOI] [PubMed] [Google Scholar]
  64. Scharschmidt B. F., Keeffe E. B., Blankenship N. M., Ockner R. K. Validation of a recording spectrophotometric method for measurement of membrane-associated Mg- and NaK-ATPase activity. J Lab Clin Med. 1979 May;93(5):790–799. [PubMed] [Google Scholar]
  65. Scharschmidt B. F., Keeffe E. B. Isolation of a rat liver plasma membrane fraction of probable canalicular origin. Preparative technique, enzymatic profile, composition, and solute transport. Biochim Biophys Acta. 1981 Sep 7;646(3):369–381. doi: 10.1016/0005-2736(81)90305-9. [DOI] [PubMed] [Google Scholar]
  66. Scharschmidt B. F., Stephens J. E. Transport of sodium, chloride, and taurocholate by cultured rat hepatocytes. Proc Natl Acad Sci U S A. 1981 Feb;78(2):986–990. doi: 10.1073/pnas.78.2.986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Schultz S. G. Sodium-coupled solute transport of small intestine: a status report. Am J Physiol. 1977 Oct;233(4):E249–E254. doi: 10.1152/ajpendo.1977.233.4.E249. [DOI] [PubMed] [Google Scholar]
  68. Schwarz L. R., Barth C. A. Taurocholate uptake by adult rat hepatocytes in primary culture. Hoppe Seylers Z Physiol Chem. 1979 Aug;360(8):1117–1120. [PubMed] [Google Scholar]
  69. Schwarz L. R., Burr R., Schwenk M., Pfaff E., Greim H. Uptake of taurocholic acid into isolated rat-liver cells. Eur J Biochem. 1975 Jul 15;55(3):617–623. doi: 10.1111/j.1432-1033.1975.tb02199.x. [DOI] [PubMed] [Google Scholar]
  70. Shaw H., Caple I., Heath T. Effect of ethacrynic acid on bile formation in sheep, dogs, rats, guinea pigs and rabbits. J Pharmacol Exp Ther. 1972 Jul;182(1):27–33. [PubMed] [Google Scholar]
  71. Simon F. R., Sutherland E., Accatino L. Stimulation of hepatic sodium and potassium-activated adenosine triphosphatase activity by phenobarbital. Its possible role in regulation of bile flow. J Clin Invest. 1977 May;59(5):849–861. doi: 10.1172/JCI108707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  72. Tavoloni N., Reed J. S., Boyer J. L. Hemodynamic effects on determinants of bile secretion in isolated rat liver. Am J Physiol. 1978 Jun;234(6):E584–E592. doi: 10.1152/ajpendo.1978.234.6.E584. [DOI] [PubMed] [Google Scholar]
  73. Wannagat R. J., Adler R. D., Ockner R. K. Bile acid-induced increase in bile acid-independent flow and plasma membrane NaK-ATPase activity in rat liver. J Clin Invest. 1978 Feb;61(2):297–307. doi: 10.1172/JCI108939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Wheeler H. O., Ramos O. L. DETERMINANTS OF THE FLOW AND COMPOSITION OF BILE IN THE UNANESTHETIZED DOG DURING CONSTANT INFUSIONS OF SODIUM TAUROCHOLATE. J Clin Invest. 1960 Jan;39(1):161–170. doi: 10.1172/JCI104015. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES