Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Jun;71(6):1698–1709. doi: 10.1172/JCI110924

Monogenic control of variations in antipyrine metabolite formation. New polymorphism of hepatic drug oxidation.

M B Penno, E S Vesell
PMCID: PMC370374  PMID: 6863539

Abstract

To investigate mechanisms that control large variations among normal uninduced subjects in the elimination of the model compound antipyrine (AP) and other drugs, AP was administered to 144 subjects (83 unrelated adults and 61 members of 13 families). Thereafter, at regular intervals for 72 h, the urine of each subject was collected and concentrations of AP and its three main metabolites measured. From these urinary concentrations, rate constants for formation of each AP metabolite were calculated. Trimodal curves were observed when values for each AP rate constant were plotted in 83 unrelated subjects; probit plots of these values showed inflections at the two antimodes of each trimodal distribution. All members of our 13 families were assigned one of three phenotypes determined by where their AP metabolite rate constant placed them in the trimodal distributions derived from the 83 unrelated subjects. In each family, pedigree analysis to identify the mode of transmission of these three phenotypes was consistent with their monogenic control. These results provide evidence for a new polymorphism of drug oxidation in man.

Full text

PDF
1699

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alvan G. Individual differences in the disposition of drugs metabolised in the body. Clin Pharmacokinet. 1978 Mar-Apr;3(2):155–175. doi: 10.2165/00003088-197803020-00005. [DOI] [PubMed] [Google Scholar]
  2. Andreasen P. B., Froland A., Skovsted L., Andersen S. A., Hauge M. Diphenylhydantoin half-life in man and its inhibition by phenylbutazone: the role of genetic factors. Acta Med Scand. 1973 Jun;193(6):561–564. doi: 10.1111/j.0954-6820.1973.tb10628.x. [DOI] [PubMed] [Google Scholar]
  3. Atlas S. A., Vesell E. S., Nebert D. W. Genetic control of interindividual variations in the inducibility of aryl hydrocarbon hydroxylase in cultured human lymphocytes. Cancer Res. 1976 Dec;36(12):4619–4630. [PubMed] [Google Scholar]
  4. BRODIE B. B., AXELROD J. The fate of antipyrine in man. J Pharmacol Exp Ther. 1950 Jan;98(1):97–104. [PubMed] [Google Scholar]
  5. Baty J. D., Evans D. A. Norphenazone, a new metabolite of phenazone in human urine. J Pharm Pharmacol. 1973 Jan;25(1):83–84. doi: 10.1111/j.2042-7158.1973.tb09124.x. [DOI] [PubMed] [Google Scholar]
  6. Bertilsson L., Eichelbaum M., Mellström B., Säwe J., Schulz H. U., Sjöqvist F. Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci. 1980 Nov 3;27(18):1673–1677. doi: 10.1016/0024-3205(80)90642-6. [DOI] [PubMed] [Google Scholar]
  7. Blain P. G., Mucklow J. C., Wood P., Roberts D. F., Rawlins M. D. Family study of antipyrine clearance. Br Med J (Clin Res Ed) 1982 Jan 16;284(6310):150–152. doi: 10.1136/bmj.284.6310.150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cascorbi H. F., Vesell E. S., Blake D. A., Helrich M. Genetic and environmental influence on halothane metabolism in twins. Clin Pharmacol Ther. 1971 Jan-Feb;12(1):50–55. doi: 10.1002/cpt197112150. [DOI] [PubMed] [Google Scholar]
  9. Danhof M., Groot-van der Vis E., Breiner D. D. Assay of antipyrine and its primary metabolites in plasma, saliva and urine by high-performance liquid chromatography and some preliminary results in man. Pharmacology. 1979;18(4):210–223. doi: 10.1159/000137254. [DOI] [PubMed] [Google Scholar]
  10. Danhof M., Idle J. R., Teunissen M. W., Sloan T. P., Breimer D. D., Smith R. L. Influence of the genetically controlled deficiency in debrisoquine hydroxylation on antipyrine metabolite formation. Pharmacology. 1981;22(6):349–358. doi: 10.1159/000137515. [DOI] [PubMed] [Google Scholar]
  11. Danhof M., Krom D. P., Breimer D. D. Studies on the different metabolic pathways of antipyrine in rats: influence of phenobarbital and 3-methylcholanthrene treatment. Xenobiotica. 1979 Nov;9(11):695–702. doi: 10.3109/00498257909042337. [DOI] [PubMed] [Google Scholar]
  12. Davies D. S., Kahn G. C., Murray S., Brodie M. J., Boobis A. R. Evidence for an enzymatic defect in the 4-hydroxylation of debrisoquine by human liver. Br J Clin Pharmacol. 1981 Jan;11(1):89–91. doi: 10.1111/j.1365-2125.1981.tb01108.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Endrenyi L., Inaba T., Kalow W. Genetic study of amobarbital elimination based on its kinetics in twins. Clin Pharmacol Ther. 1976 Dec;20(6):701–714. doi: 10.1002/cpt1976206701. [DOI] [PubMed] [Google Scholar]
  14. Furst D. E., Gupta N., Paulus H. E. Salicylate metabolism in twins. Evidence suggesting a genetic influence and induction of salicylurate formation. J Clin Invest. 1977 Jul;60(1):32–42. doi: 10.1172/JCI108766. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Inaba T., Lucassen M., Kalow W. Antipyrine metabolism in the rat by three hepatic monooxygenases. Life Sci. 1980 Jun 9;26(23):1977–1983. doi: 10.1016/0024-3205(80)90629-3. [DOI] [PubMed] [Google Scholar]
  16. Kellermann G., Luyten-Kellermann M., Horning M. G., Stafford M. Elimination of antipyrine and benzo[a]pyrene metabolism in cultured human lymphocytes. Clin Pharmacol Ther. 1976 Jul;20(1):72–80. doi: 10.1002/cpt197620172. [DOI] [PubMed] [Google Scholar]
  17. Mahgoub A., Idle J. R., Dring L. G., Lancaster R., Smith R. L. Polymorphic hydroxylation of Debrisoquine in man. Lancet. 1977 Sep 17;2(8038):584–586. doi: 10.1016/s0140-6736(77)91430-1. [DOI] [PubMed] [Google Scholar]
  18. O'Malley K., Crooks J., Duke E., Stevenson I. H. Effect of age and sex on human drug metabolism. Br Med J. 1971 Sep 11;3(5775):607–609. doi: 10.1136/bmj.3.5775.607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Prescott L. F., Adjepon-Yamoah K. K., Roberts E. Rapid gas-liquid chromatographic estimation of antipyrine in plasma. J Pharm Pharmacol. 1973 Mar;25(3):205–207. doi: 10.1111/j.2042-7158.1973.tb10625.x. [DOI] [PubMed] [Google Scholar]
  20. Sultatos L. G., Dvorchik B. H., Vesell E. S., Shand D. G., Branch R. A. Further observations on relationships between antipyrine half-life, clearance and volume of distribution: an appraisal of alternative kinetic parameters used to assess the elimination of antipyrine. Clin Pharmacokinet. 1980 May-Jun;5(3):263–273. doi: 10.2165/00003088-198005030-00005. [DOI] [PubMed] [Google Scholar]
  21. Vesell E. S., Page J. G. Genetic control of dicumarol levels in man. J Clin Invest. 1968 Dec;47(12):2657–2663. doi: 10.1172/JCI105949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Vesell E. S., Page J. G. Genetic control of drug levels in man: antipyrine. Science. 1968 Jul 5;161(3836):72–73. doi: 10.1126/science.161.3836.72. [DOI] [PubMed] [Google Scholar]
  23. Vesell E. S., Page J. G. Genetic control of drug levels in man: phenylbutazone. Science. 1968 Mar 29;159(3822):1479–1480. doi: 10.1126/science.159.3822.1479. [DOI] [PubMed] [Google Scholar]
  24. Vesell E. S., Page J. G., Passananti G. T. Genetic and environmental factors affecting ethanol metabolism in man. Clin Pharmacol Ther. 1971 Mar-Apr;12(2):192–201. doi: 10.1002/cpt1971122part1192. [DOI] [PubMed] [Google Scholar]
  25. Vesell E. S., Passananti G. T., Glenwright P. A., Dvorchik B. H. Studies on the disposition of antipyrine, aminopyrine, and phenacetin using plasma, saliva, and urine. Clin Pharmacol Ther. 1975 Sep;18(3):259–272. doi: 10.1002/cpt1975183259. [DOI] [PubMed] [Google Scholar]
  26. Vesell E. S. The antipyrine test in clinical pharmacology: conceptions and misconceptions. Clin Pharmacol Ther. 1979 Sep;26(3):275–286. doi: 10.1002/cpt1979263275. [DOI] [PubMed] [Google Scholar]
  27. Vesell E. S. Twin studies in pharmacogenetics. Hum Genet Suppl. 1978;(1):19–30. doi: 10.1007/978-3-642-67179-1_4. [DOI] [PubMed] [Google Scholar]
  28. Vestal R. E., Norris A. H., Tobin J. D., Cohen B. H., Shock N. W., Andres R. Antipyrine metabolism in man: influence of age, alcohol, caffeine, and smoking. Clin Pharmacol Ther. 1975 Oct;18(4):425–432. doi: 10.1002/cpt1975184425. [DOI] [PubMed] [Google Scholar]
  29. Woolhouse N. M., Andoh B., Mahgoub A., Sloan T. P., Idle J. R., Smith R. L. Debrisoquin hydroxylation polymorphism among Ghanaians and Caucasians. Clin Pharmacol Ther. 1979 Nov;26(5):584–591. doi: 10.1002/cpt1979265584. [DOI] [PubMed] [Google Scholar]
  30. Yoshimura H., Shimeno H., Tsukamoto H. Metabolism of drugs. LIX. A new metabolite of antipyrine. Biochem Pharmacol. 1968 Aug;17(8):1511–1516. doi: 10.1016/0006-2952(68)90210-4. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES