Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1983 Nov;72(5):1611–1621. doi: 10.1172/JCI111120

Regulation of high density lipoprotein receptor activity in cultured human skin fibroblasts and human arterial smooth muscle cells.

J F Oram, E A Brinton, E L Bierman
PMCID: PMC370449  PMID: 6313765

Abstract

Cultured human skin fibroblasts and human arterial smooth muscle cells possess high-affinity binding sites specific for high density lipoproteins (HDL). Results from the present study demonstrate that binding of HDL to these sites is up-regulated in response to cholesterol loading of cells. When fibroblasts or smooth muscle cells were preincubated with nonlipoprotein cholesterol, cellular binding of 125I-HDL3 was enhanced severalfold. This enhancement was sustained in the presence of cholesterol but was readily reversed when cells were exposed to cholesterol-free medium. The stimulatory effect of cholesterol treatment was prevented by cycloheximide, suggesting the involvement of protein synthesis. Kinetic analysis of HDL3 binding showed that prior exposure to cholesterol led to an induction of high-affinity binding sites on the cell surface. In the up-regulated state, the apparent dissociation constant (Kd) of these sites was approximately 2 micrograms protein/ml. Competition studies indicated that the HDL binding sites recognized either HDL3 or HDL2 but interacted weakly with low density lipoprotein (LDL). Exposure of cells to lipoprotein cholesterol in the form of LDL also enhanced HDL binding by a process related to delivery of sterol into cells via the LDL receptor pathway. Enhancement of HDL binding to fibroblasts by either nonlipoprotein cholesterol or LDL was associated with an increased cell cholesterol content, a suppressed rate of cholesterol synthesis, decreased LDL receptor activity, and an enhanced rate of cholesterol ester formation. A comparison of HDL3 binding with the effects of HDL3 on cholesterol transport from cells revealed similar saturation profiles, implying a link between the two processes. Thus, cultured human fibroblasts and human arterial smooth muscle cells appear to possess specific receptors for HDL that may function to facilitate cholesterol removal from cells.

Full text

PDF
1614

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bates S. R. Accumulation and loss of cholesterol esters in monkey arterial smooth muscle cells exposed to normal and hyperlipemic serum lipoproteins. Atherosclerosis. 1979 Feb;32(2):165–176. doi: 10.1016/0021-9150(79)90081-9. [DOI] [PubMed] [Google Scholar]
  2. Bierman E. L., Stein O., Stein Y. Lipoprotein uptake and metabolism by rat aortic smooth muscle cells in tissue culture. Circ Res. 1974 Jul;35(1):136–150. doi: 10.1161/01.res.35.1.136. [DOI] [PubMed] [Google Scholar]
  3. Biesbroeck R., Oram J. F., Albers J. J., Bierman E. L. Specific high-affinity binding of high density lipoproteins to cultured human skin fibroblasts and arterial smooth muscle cells. J Clin Invest. 1983 Mar;71(3):525–539. doi: 10.1172/JCI110797. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Bilheimer D. W., Eisenberg S., Levy R. I. The metabolism of very low density lipoprotein proteins. I. Preliminary in vitro and in vivo observations. Biochim Biophys Acta. 1972 Feb 21;260(2):212–221. doi: 10.1016/0005-2760(72)90034-3. [DOI] [PubMed] [Google Scholar]
  5. Brown M. S., Faust J. R., Goldstein J. L. Role of the low density lipoprotein receptor in regulating the content of free and esterified cholesterol in human fibroblasts. J Clin Invest. 1975 Apr;55(4):783–793. doi: 10.1172/JCI107989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brown M. S., Goldstein J. L. Receptor-mediated control of cholesterol metabolism. Science. 1976 Jan 16;191(4223):150–154. doi: 10.1126/science.174194. [DOI] [PubMed] [Google Scholar]
  7. Brown M. S., Ho Y. K., Goldstein J. L. The cholesteryl ester cycle in macrophage foam cells. Continual hydrolysis and re-esterification of cytoplasmic cholesteryl esters. J Biol Chem. 1980 Oct 10;255(19):9344–9352. [PubMed] [Google Scholar]
  8. Daerr W. H., Gianturco S. H., Patsch J. R., Smith L. C., Gotto A. M., Jr Stimulation and suppression of 3-hydroxy-3-methylglutaryl coenzyme A reductase in normal human fibroblasts by high density lipoprotein subclasses. Biochim Biophys Acta. 1980 Aug 11;619(2):287–301. doi: 10.1016/0005-2760(80)90077-6. [DOI] [PubMed] [Google Scholar]
  9. Daniels R. J., Guertler L. S., Parker T. S., Steinberg D. Studies on the rate of efflux of cholesterol from cultured human skin fibroblasts. J Biol Chem. 1981 May 25;256(10):4978–4983. [PubMed] [Google Scholar]
  10. Glomset J. A. The plasma lecithins:cholesterol acyltransferase reaction. J Lipid Res. 1968 Mar;9(2):155–167. [PubMed] [Google Scholar]
  11. Goldstein J. L., Brown M. S. The LDL receptor locus and the genetics of familial hypercholesterolemia. Annu Rev Genet. 1979;13:259–289. doi: 10.1146/annurev.ge.13.120179.001355. [DOI] [PubMed] [Google Scholar]
  12. Heider J. G., Boyett R. L. The picomole determination of free and total cholesterol in cells in culture. J Lipid Res. 1978 May;19(4):514–518. [PubMed] [Google Scholar]
  13. Innerarity T. L., Pitas R. E., Mahley R. W. Modulating effects of canine high density lipoproteins on cholesteryl ester synthesis induced by beta-very low density lipoproteins in macrophages. Possible in vitro correlates with atherosclerosis. Arteriosclerosis. 1982 Mar-Apr;2(2):114–124. doi: 10.1161/01.atv.2.2.114. [DOI] [PubMed] [Google Scholar]
  14. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  15. Miller G. J. High density lipoproteins and atherosclerosis. Annu Rev Med. 1980;31:97–108. doi: 10.1146/annurev.me.31.020180.000525. [DOI] [PubMed] [Google Scholar]
  16. Miller N. E. Induction of low density lipoprotein receptor synthesis by high density lipoprotein in cultures of human skin fibroblasts. Biochim Biophys Acta. 1978 Apr 28;529(1):131–137. doi: 10.1016/0005-2760(78)90111-x. [DOI] [PubMed] [Google Scholar]
  17. Miller N. E., Weinstein D. B., Carew T. E., Koschinsky T., Steinberg D. Interaction between high density and low density lipoproteins uptake and degradation by cultured human fibroblasts. J Clin Invest. 1977 Jul;60(1):78–88. doi: 10.1172/JCI108772. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Miller N. E., Weinstein D. B., Steinberg D. Binding, internalization, and degradation of high density lipoprotein by cultured normal human fibroblasts. J Lipid Res. 1977 Jul;18(4):438–450. [PubMed] [Google Scholar]
  19. Mitchell C. D., King W. C., Applegate K. R., Forte T., Glomset J. A., Norum K. R., Gjone E. Characterization of apolipoprotein E-rich high density lipoproteins in familial lecithin:cholesterol acyltransferase deficiency. J Lipid Res. 1980 Jul;21(5):625–634. [PubMed] [Google Scholar]
  20. Oram J. F., Albers J. J., Bierman E. L. Rapid regulation of the activity of the low density lipoprotein receptor of cultured human fibroblasts. J Biol Chem. 1980 Jan 25;255(2):475–485. [PubMed] [Google Scholar]
  21. Oram J. F., Albers J. J., Cheung M. C., Bierman E. L. The effects of subfractions of high density lipoprotein on cholesterol efflux from cultured fibroblasts. Regulation of low density lipoprotein receptor activity. J Biol Chem. 1981 Aug 25;256(16):8348–8356. [PubMed] [Google Scholar]
  22. Oram J. F. Effects of high density lipoprotein subfractions on cholesterol homeostasis in human fibroblasts and arterial smooth muscle cells. Arteriosclerosis. 1983 Sep-Oct;3(5):420–432. doi: 10.1161/01.atv.3.5.420. [DOI] [PubMed] [Google Scholar]
  23. Stein O., Stein Y. Comparative uptake of rat and human serum low-density and high-density lipoproteins by rat aortic smooth muscle cells in culture. Circ Res. 1975 Mar;36(3):436–443. doi: 10.1161/01.res.36.3.436. [DOI] [PubMed] [Google Scholar]
  24. Stein O., Vanderhoek J., Stein Y. Cholesterol content and sterol synthesis in human skin fibroblasts and rat aortic smooth muscle cells exposed to lipoprotein-depleted serum and high density apolipoprotein/phospholipid mixtures. Biochim Biophys Acta. 1976 May 27;431(2):347–358. doi: 10.1016/0005-2760(76)90155-7. [DOI] [PubMed] [Google Scholar]
  25. Tauber J. P., Goldminz D., Gospodarowicz D. Up-regulation in vascular endothelial cells of binding sites of high density lipoprotein induced by 25-hydroxycholesterol. Eur J Biochem. 1981 Oct;119(2):327–339. doi: 10.1111/j.1432-1033.1981.tb05612.x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES