Skip to main content
The Journal of Clinical Investigation logoLink to The Journal of Clinical Investigation
. 1981 May;67(5):1415–1424. doi: 10.1172/JCI110170

Regulation of Hepatic Glutathione Turnover in Rats In Vivo and Evidence for Kinetic Homogeneity of the Hepatic Glutathione Pool

Bernhard H Lauterburg 1, Jerry R Mitchell 1
PMCID: PMC370708  PMID: 6262375

Abstract

The intracellular distribution of glutathione into kinetically distinct pools and the determinants of glutathione turnover were examined in vivo. Glutathione turnover was measured in individual, restrained rats with a biliary fistula by administration of acetaminophen to trap the previously labeled hepatic glutathione as an excretable acetaminophen adduct. Fasting for 48 h resulted in a decrease of hepatic glutathione from 4.7±0.9 to 3.6±0.8 μmol/g liver and a marked increase in the fractional rate of glutathione turnover from 0.19±0.04 to 0.43±0.07/h. Within 6 h following refeeding, the rate of glutathione turnover and the hepatic glutathione concentration returned to normal. The simultaneously determined specific activities of free intrahepatic glutathione and the acetaminophen-glutathione adduct in bile were identical, indicating that the hepatic glutathione pool is kinetically homogeneous. The synthesis of glutathione could, therefore, be estimated from the rate constant and the intrahepatic glutathione concentration. During fasting hepatic synthesis of glutathione increased from 0.86±0.17 to 1.50±0.23 μmol/g per h. In fed animals the administration of dibutyryl cyclic adenosine monophosphate and theophylline stimulated the rate of hepatic glutathione turnover similar to fasting. In contrast, glucose given intraduodenally to fasted animals decreased the rate of glutathione turnover. These data are consistent with the view that the increased glutathione turnover that occurs during fasting results from two mechanisms. Because of a decrease in the intrahepatic free glutathione/mixed disulfide ratio, which is apparently mediated by cyclic adenosine monophosphate, the free glutathione pool contracts and turns over more rapidly in order to maintain glutathione synthesis. In addition, glutathione consumption via the gamma-glutamyl cycle apparently is increased, which may be related to the increased uptake of amino acids for gluconeogenesis during fasting.

Full text

PDF
1418

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barnhart J. L., Combes B. Choleresis associated with metabolism and biliary excretion of diethyl maleate in the rat and dog. J Pharmacol Exp Ther. 1978 Sep;206(3):614–623. [PubMed] [Google Scholar]
  2. Buckpitt A. R., Rollins D. E., Nelson S. D., Franklin R. B., Mitchell J. R. Quantitative determination of the glutathione, cysteine, and N-acetyl cysteine conjugates of acetaminophen by high-pressure liquid chromatography. Anal Biochem. 1977 Nov;83(1):168–177. doi: 10.1016/0003-2697(77)90522-x. [DOI] [PubMed] [Google Scholar]
  3. EDWARDS S., WESTERFELD W. W. Blood and liver glutathione during protein deprivation. Proc Soc Exp Biol Med. 1952 Jan;79(1):57–59. doi: 10.3181/00379727-79-19271. [DOI] [PubMed] [Google Scholar]
  4. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  5. Exton J. H., Lewis S. B., Ho R. J., Robison G. A., Park C. R. The role of cyclic AMP in the interaction of glucagon and insulin in the control of liver metabolism. Ann N Y Acad Sci. 1971 Dec 30;185:85–100. doi: 10.1111/j.1749-6632.1971.tb45239.x. [DOI] [PubMed] [Google Scholar]
  6. Griffith O. W., Bridges R. J., Meister A. Evidence that the gamma-glutamyl cycle functions in vivo using intracellular glutathione: effects of amino acids and selective inhibition of enzymes. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5405–5408. doi: 10.1073/pnas.75.11.5405. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Griffith O. W. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem. 1980 Jul 15;106(1):207–212. doi: 10.1016/0003-2697(80)90139-6. [DOI] [PubMed] [Google Scholar]
  8. Griffith O. W., Meister A. Glutathione: interorgan translocation, turnover, and metabolism. Proc Natl Acad Sci U S A. 1979 Nov;76(11):5606–5610. doi: 10.1073/pnas.76.11.5606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HENRIQUES S. B., HENRIQUES O. B., MANDELBAUM F. R. Incorporation of glycine into glutathione and fibrinogen of rats under adrenaline treatment. Biochem J. 1957 Jun;66(2):222–227. doi: 10.1042/bj0660222. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Habeeb A. F. A sensitive method for localization of disulfide containing peptides in column effluents. Anal Biochem. 1973 Nov;56(1):60–65. doi: 10.1016/0003-2697(73)90169-3. [DOI] [PubMed] [Google Scholar]
  11. Higashi T., Tateishi N., Naruse A., Sakamoto Y. A novel physiological role of liver glutathione as a reservoir of L-cysteine. J Biochem. 1977 Jul;82(1):117–124. doi: 10.1093/oxfordjournals.jbchem.a131659. [DOI] [PubMed] [Google Scholar]
  12. Higashi T., Tateishi N., Naruse A., Sakamoto Y. Decrease of glutathione and induction of gamma-glutamyltransferase by dibutyryl-3', 5'-cyclic AMP in rat liver. Biochem Biophys Res Commun. 1976 Feb 23;68(4):1280–1286. doi: 10.1016/0006-291x(76)90335-1. [DOI] [PubMed] [Google Scholar]
  13. Isaacs J. T., Binkley F. Cyclic AMP-dependent control of the rat hepatic glutathione disulfide-sulfhydryl ratio. Biochim Biophys Acta. 1977 Jun 23;498(1):29–38. doi: 10.1016/0304-4165(77)90084-8. [DOI] [PubMed] [Google Scholar]
  14. Isaacs J., Binkley F. Glutathione dependent control of protein disulfide-sulfhydryl content by subcellular fractions of hepatic tissue. Biochim Biophys Acta. 1977 Mar 29;497(1):192–204. doi: 10.1016/0304-4165(77)90152-0. [DOI] [PubMed] [Google Scholar]
  15. Jefferson L. S., Exton J. H., Butcher R. W., Sutherland E. W., Park C. R. Role of adenosine 3',5'-monophosphate in the effects of insulin and anti-insulin serum on liver metabolism. J Biol Chem. 1968 Mar 10;243(5):1031–1038. [PubMed] [Google Scholar]
  16. Kosower N. S., Kosower E. M. The glutathione status of cells. Int Rev Cytol. 1978;54:109–160. doi: 10.1016/s0074-7696(08)60166-7. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. Lauterburg B. H., Vaishnav Y., Stillwell W. G., Mitchell J. R. The effects of age and glutathione depletion on hepatic glutathione turnover in vivo determined by acetaminophen probe analysis. J Pharmacol Exp Ther. 1980 Apr;213(1):54–58. [PubMed] [Google Scholar]
  19. Leaf G., Neuberger A. The effect of diet on the glutathione content of the liver. Biochem J. 1947;41(2):280–287. [PMC free article] [PubMed] [Google Scholar]
  20. Mallette L. E., Exton J. H., Park Effects of glucagon on amino acid transport and utilization in the perfused rat liver. J Biol Chem. 1969 Oct 25;244(20):5724–5728. [PubMed] [Google Scholar]
  21. McLean A. E., Day P. A. The effect of diet on the toxicity of paracetamol and the safety of paracetamol-methionine mixtures. Biochem Pharmacol. 1975 Jan 1;24(1):37–42. doi: 10.1016/0006-2952(75)90310-x. [DOI] [PubMed] [Google Scholar]
  22. Meister A., Tate S. S. Glutathione and related gamma-glutamyl compounds: biosynthesis and utilization. Annu Rev Biochem. 1976;45:559–604. doi: 10.1146/annurev.bi.45.070176.003015. [DOI] [PubMed] [Google Scholar]
  23. Parrilla R., Goodman M. N., Toews C. J. Effect of glucagon: insulin ratios on hepatic metabolism. Diabetes. 1974 Sep;23(9):725–731. doi: 10.2337/diab.23.9.725. [DOI] [PubMed] [Google Scholar]
  24. Reid W. D., Christie B., Krishna G., Mitchell J. R., Moskowitz J., Brodie B. B. Bromobenzene metabolism and hepatic necrosis. Pharmacology. 1971;6(1):41–55. doi: 10.1159/000136226. [DOI] [PubMed] [Google Scholar]
  25. Richman P. G., Meister A. Regulation of gamma-glutamyl-cysteine synthetase by nonallosteric feedback inhibition by glutathione. J Biol Chem. 1975 Feb 25;250(4):1422–1426. [PubMed] [Google Scholar]
  26. Selawry H., Gutman R., Fink G., Recant L. The effect of starvation on tissue adenosine 3'-5' monophosphate levels. Biochem Biophys Res Commun. 1973 Mar 5;51(1):198–204. doi: 10.1016/0006-291x(73)90528-7. [DOI] [PubMed] [Google Scholar]
  27. Tate S. S., Meister A. Interaction of gamma-glutamyl transpeptidase with amino acids, dipeptides, and derivatives and analogs of glutathione. J Biol Chem. 1974 Dec 10;249(23):7593–7602. [PubMed] [Google Scholar]
  28. Tateishi N., Higashi T., Naruse A., Nakashima K., Shiozaki H. Rat liver glutathione: possible role as a reservoir of cysteine. J Nutr. 1977 Jan;107(1):51–60. doi: 10.1093/jn/107.1.51. [DOI] [PubMed] [Google Scholar]
  29. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem. 1969 Mar;27(3):502–522. doi: 10.1016/0003-2697(69)90064-5. [DOI] [PubMed] [Google Scholar]
  30. Young L. The metabolic conversion of naphthalene to 1:2-dihydronaphthalene-1:2-diol. Biochem J. 1947;41(3):417–422. doi: 10.1042/bj0410417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Zampaglione N., Jollow D. J., Mitchell J. R., Stripp B., Hamrick M., Gillette J. R. Role of detoxifying enzymes in bromobenzene-induced liver necrosis. J Pharmacol Exp Ther. 1973 Oct;187(1):218–227. [PubMed] [Google Scholar]

Articles from Journal of Clinical Investigation are provided here courtesy of American Society for Clinical Investigation

RESOURCES