Abstract
A role for Ca2+ in the tip growth process of fungal hyphae and other eukaryotic walled cells has been widely explored, following the earlier indications of their importance by Jaffe, Steer, and their colleagues. Analysis of the literature on fungi, with selected comparison with other tip-growing plant cells, shows that the growth rate and morphology of hyphae are sensitive to factors which influence intracellular Ca2+. These factors include variations in extracellular Ca2+ concentrations, Ca2+ ionophores, inhibitors of Ca2+ transport, and calmodulin- and Ca(2+)-binding dyes and buffers introduced into the cytoplasm. The effects of these agents appear to be mediated by a tip-high gradient of cytoplasmic free Ca2+ which is obligatorily present in all critically examined growing tips. Most recent observations agree that the gradient is very steep, declining rapidly within 10 to 20 microns of the tip. This gradient seems to be generated by the combined effects of an influx of Ca2+, via plasma membrane, possibly stretch-activated, channels localized in the hyphal tip, and subapical expulsion or sequestration of these ions. Expulsion probably involves a plasma membrane Ca(2+)-ATPase, but it is not yet possible to differentiate among mitochondria, endoplasmic reticulum, or vacuoles as the dominant sites of sequestration. It is suggested that regulation of the Ca2+ gradient in turn modulates the properties of the actin-based component of the cytoskeleton, which then controls the extensibility, and, possibly, the synthesis of the hyphal apex. Regulatory feedback mechanisms intrinsic to this model of tip growth regulation are briefly discussed, together with suggestions for future experiments which are crucial to its further elucidation and establishment.
Full text
PDF















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adams A. E., Botstein D., Drubin D. G. A yeast actin-binding protein is encoded by SAC6, a gene found by suppression of an actin mutation. Science. 1989 Jan 13;243(4888):231–233. doi: 10.1126/science.2643162. [DOI] [PubMed] [Google Scholar]
- Adams A. E., Botstein D., Drubin D. G. Requirement of yeast fimbrin for actin organization and morphogenesis in vivo. Nature. 1991 Dec 5;354(6352):404–408. doi: 10.1038/354404a0. [DOI] [PubMed] [Google Scholar]
- Allen E. D., Aiuto R., Sussman A. S. Effects of cytochalasins on Neurospora crassa. I. Growth and ultrastructure. Protoplasma. 1980;102(1-2):63–75. doi: 10.1007/BF01276948. [DOI] [PubMed] [Google Scholar]
- Bartnicki-Garcia S., Lippman E. Fungal morphogenesis: cell wall construction in Mucor rouxii. Science. 1969 Jul 18;165(3890):302–304. doi: 10.1126/science.165.3890.302. [DOI] [PubMed] [Google Scholar]
- Bertazzon A., Tian G. H., Lamblin A., Tsong T. Y. Enthalpic and entropic contributions to actin stability: calorimetry, circular dichroism, and fluorescence study and effects of calcium. Biochemistry. 1990 Jan 9;29(1):291–298. doi: 10.1021/bi00453a040. [DOI] [PubMed] [Google Scholar]
- Bolsover S., Silver R. A. Artifacts in calcium measurement: recognition and remedies. Trends Cell Biol. 1991 Aug;1(2-3):71–74. doi: 10.1016/0962-8924(91)90093-o. [DOI] [PubMed] [Google Scholar]
- Bowman B. J., Bowman E. J. H+-ATPases from mitochondria, plasma membranes, and vacuoles of fungal cells. J Membr Biol. 1986;94(2):83–97. doi: 10.1007/BF01871190. [DOI] [PubMed] [Google Scholar]
- Bray D., Vasiliev J. Cell motility. Networks from mutants. Nature. 1989 Mar 16;338(6212):203–204. doi: 10.1038/338203a0. [DOI] [PubMed] [Google Scholar]
- Brzeska H., Lynch T. J., Korn E. D. Acanthamoeba myosin I heavy chain kinase is activated by phosphatidylserine-enhanced phosphorylation. J Biol Chem. 1990 Mar 5;265(7):3591–3594. [PubMed] [Google Scholar]
- Bush D. S., Jones R. L. Measurement of cytoplasmic calcium in aleurone protoplasts using indo-1 and fura-2. Cell Calcium. 1987 Dec;8(6):455–472. doi: 10.1016/0143-4160(87)90029-7. [DOI] [PubMed] [Google Scholar]
- Bush D. S., Jones R. L. Measuring intracellular ca levels in plant cells using the fluorescent probes, indo-1 and fura-2 : progress and prospects. Plant Physiol. 1990 Jul;93(3):841–845. doi: 10.1104/pp.93.3.841. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Butt T. M., Heath I. B. The changing distribution of actin and nuclear behavior during the cell cycle of the mite-pathogenic fungus Neozygites sp. Eur J Cell Biol. 1988 Aug;46(3):499–505. [PubMed] [Google Scholar]
- Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi: 10.1146/annurev.bi.56.070187.002143. [DOI] [PubMed] [Google Scholar]
- Caswell A. H., Hutchison J. D. Selectivity of cation chelation to tetracyclines: evidence for special conformation of calcium chelate. Biochem Biophys Res Commun. 1971 May 7;43(3):625–630. doi: 10.1016/0006-291x(71)90660-7. [DOI] [PubMed] [Google Scholar]
- Caswell A. H. Methods of measuring intracellular calcium. Int Rev Cytol. 1979;56:145–181. doi: 10.1016/s0074-7696(08)61822-7. [DOI] [PubMed] [Google Scholar]
- Chen C. H., Lehninger A. L. Ca 2+ transport activity in mitochondria from some plant tissues. Arch Biochem Biophys. 1973 Jul;157(1):183–196. doi: 10.1016/0003-9861(73)90404-9. [DOI] [PubMed] [Google Scholar]
- Cheung W. Y. Calmodulin plays a pivotal role in cellular regulation. Science. 1980 Jan 4;207(4426):19–27. doi: 10.1126/science.6243188. [DOI] [PubMed] [Google Scholar]
- Condeelis J., Vahey M., Carboni J. M., DeMey J., Ogihara S. Properties of the 120,000- and 95,000-dalton actin-binding proteins from Dictyostelium discoideum and their possible functions in assembling the cytoplasmic matrix. J Cell Biol. 1984 Jul;99(1 Pt 2):119s–126s. doi: 10.1083/jcb.99.1.119s. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Connor J. A. Digital imaging of free calcium changes and of spatial gradients in growing processes in single, mammalian central nervous system cells. Proc Natl Acad Sci U S A. 1986 Aug;83(16):6179–6183. doi: 10.1073/pnas.83.16.6179. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cornelius G., Gebauer G., Techel D. Inositol trisphosphate induces calcium release from Neurospora crassa vacuoles. Biochem Biophys Res Commun. 1989 Jul 31;162(2):852–856. doi: 10.1016/0006-291x(89)92388-7. [DOI] [PubMed] [Google Scholar]
- Corps A. N., Hesketh T. R., Metcalfe J. C. Limitations on the use of phenothiazines and local anaesthetics as indicators of calmodulin function in intact cells. FEBS Lett. 1982 Feb 22;138(2):280–284. doi: 10.1016/0014-5793(82)80461-4. [DOI] [PubMed] [Google Scholar]
- Coukell M. B., Cameron A. M. Effects of calcium antagonists on cyclic AMP phosphodiesterase induction in Dictyostelium discoideum. J Cell Sci. 1987 Oct;88(Pt 3):379–388. doi: 10.1242/jcs.88.3.379. [DOI] [PubMed] [Google Scholar]
- Dixon D., Brandt N., Haynes D. H. Chlorotetracycline fluorescence is a quantitative measure of the free internal Ca2+ concentration achieved by active transport. In situ calibration and application to bovine cardiac sarcolemmal vesicles. J Biol Chem. 1984 Nov 25;259(22):13737–13741. [PubMed] [Google Scholar]
- Downey G. P., Chan C. K., Trudel S., Grinstein S. Actin assembly in electropermeabilized neutrophils: role of intracellular calcium. J Cell Biol. 1990 Jun;110(6):1975–1982. doi: 10.1083/jcb.110.6.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Garrill A., Jackson S. L., Lew R. R., Heath I. B. Ion channel activity and tip growth: tip-localized stretch-activated channels generate an essential Ca2+ gradient in the oomycete Saprolegnia ferax. Eur J Cell Biol. 1993 Apr;60(2):358–365. [PubMed] [Google Scholar]
- Giannini J. L., Holt J. S., Briskin D. P. Isolation of sealed plasma membrane vesicles from Phytophthora megasperma f. sp. glycinea: II. Partial characterization of Ca2+ transport and glyceollin effects. Arch Biochem Biophys. 1988 Nov 1;266(2):644–649. doi: 10.1016/0003-9861(88)90298-6. [DOI] [PubMed] [Google Scholar]
- Gilroy S., Read N. D., Trewavas A. J. Elevation of cytoplasmic calcium by caged calcium or caged inositol triphosphate initiates stomatal closure. Nature. 1990 Aug 23;346(6286):769–771. doi: 10.1038/346769a0. [DOI] [PubMed] [Google Scholar]
- Grove S. N., Bracker C. E. Protoplasmic organization of hyphal tips among fungi: vesicles and Spitzenkörper. J Bacteriol. 1970 Nov;104(2):989–1009. doi: 10.1128/jb.104.2.989-1009.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grynkiewicz G., Poenie M., Tsien R. Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem. 1985 Mar 25;260(6):3440–3450. [PubMed] [Google Scholar]
- Gustin M. C., Zhou X. L., Martinac B., Kung C. A mechanosensitive ion channel in the yeast plasma membrane. Science. 1988 Nov 4;242(4879):762–765. doi: 10.1126/science.2460920. [DOI] [PubMed] [Google Scholar]
- Halachmi D., Eilam Y. Cytosolic and vacuolar Ca2+ concentrations in yeast cells measured with the Ca2+-sensitive fluorescence dye indo-1. FEBS Lett. 1989 Oct 9;256(1-2):55–61. doi: 10.1016/0014-5793(89)81717-x. [DOI] [PubMed] [Google Scholar]
- Hallett M., Schneider A. S., Carbone E. Tetracycline fluorescence as calcium-probe for nerve membrane with some model studies using erythrocyte ghosts. J Membr Biol. 1972;10(1):31–44. doi: 10.1007/BF01867846. [DOI] [PubMed] [Google Scholar]
- Harold F. M. To shape a cell: an inquiry into the causes of morphogenesis of microorganisms. Microbiol Rev. 1990 Dec;54(4):381–431. doi: 10.1128/mr.54.4.381-431.1990. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Harold R. L., Harold F. M. Ionophores and cytochalasins modulate branching in Achlya bisexualis. J Gen Microbiol. 1986 Jan;132(1):213–219. doi: 10.1099/00221287-132-1-213. [DOI] [PubMed] [Google Scholar]
- Harris A. S., Morrow J. S. Calmodulin and calcium-dependent protease I coordinately regulate the interaction of fodrin with actin. Proc Natl Acad Sci U S A. 1990 Apr;87(8):3009–3013. doi: 10.1073/pnas.87.8.3009. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Heimark R. L., Degner M., Schwartz S. M. Identification of a Ca2(+)-dependent cell-cell adhesion molecule in endothelial cells. J Cell Biol. 1990 May;110(5):1745–1756. doi: 10.1083/jcb.110.5.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Higashi-Fujime S. Reconstitution of active movement in vitro based on the actin-myosin interaction. Int Rev Cytol. 1991;125:95–138. doi: 10.1016/s0074-7696(08)61217-6. [DOI] [PubMed] [Google Scholar]
- Hoch H. C., Staples R. C. Visualization of actin in situ by rhodamine-conjugated phalloin in the fungus Uromyces phaseoli. Eur J Cell Biol. 1983 Nov;32(1):52–58. [PubMed] [Google Scholar]
- Iida H., Yagawa Y., Anraku Y. Essential role for induced Ca2+ influx followed by [Ca2+]i rise in maintaining viability of yeast cells late in the mating pheromone response pathway. A study of [Ca2+]i in single Saccharomyces cerevisiae cells with imaging of fura-2. J Biol Chem. 1990 Aug 5;265(22):13391–13399. [PubMed] [Google Scholar]
- Ishikawa R., Yamashiro S., Matsumura F. Annealing of gelsolin-severed actin fragments by tropomyosin in the presence of Ca2+. Potentiation of the annealing process by caldesmon. J Biol Chem. 1989 Oct 5;264(28):16764–16770. [PubMed] [Google Scholar]
- Jaffe L. A., Weisenseel M. H., Jaffe L. F. Calcium accumulations within the growing tips of pollen tubes. J Cell Biol. 1975 Nov;67(2PT1):488–492. doi: 10.1083/jcb.67.2.488. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jaffe L. F., Nuccitelli R. Electrical controls of development. Annu Rev Biophys Bioeng. 1977;6:445–476. doi: 10.1146/annurev.bb.06.060177.002305. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F., Robinson K. R., Nuccitelli R. Local cation entry and self-electrophoresis as an intracellular localization mechanism. Ann N Y Acad Sci. 1974;238:372–389. doi: 10.1111/j.1749-6632.1974.tb26805.x. [DOI] [PubMed] [Google Scholar]
- Jaffe L. F. The role of ionic currents in establishing developmental pattern. Philos Trans R Soc Lond B Biol Sci. 1981 Oct 7;295(1078):553–566. doi: 10.1098/rstb.1981.0160. [DOI] [PubMed] [Google Scholar]
- Joseph S. K., Thomas A. P., Williams R. J., Irvine R. F., Williamson J. R. myo-Inositol 1,4,5-trisphosphate. A second messenger for the hormonal mobilization of intracellular Ca2+ in liver. J Biol Chem. 1984 Mar 10;259(5):3077–3081. [PubMed] [Google Scholar]
- Kropf D. L., Caldwell J. H., Gow N. A., Harold F. M. Transcellular ion currents in the water mold Achlya. Amino acid proton symport as a mechanism of current entry. J Cell Biol. 1984 Aug;99(2):486–496. doi: 10.1083/jcb.99.2.486. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kropf D. L. Establishment and expression of cellular polarity in fucoid zygotes. Microbiol Rev. 1992 Jun;56(2):316–339. doi: 10.1128/mr.56.2.316-339.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kropf D. L., Lupa M. D., Caldwell J. H., Harold F. M. Cell polarity: endogenous ion currents precede and predict branching in the water mold achyla. Science. 1983 Jun 24;220(4604):1385–1387. doi: 10.1126/science.220.4604.1385. [DOI] [PubMed] [Google Scholar]
- Kühtreiber W. M., Jaffe L. F. Detection of extracellular calcium gradients with a calcium-specific vibrating electrode. J Cell Biol. 1990 May;110(5):1565–1573. doi: 10.1083/jcb.110.5.1565. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lattanzio F. A., Jr The effects of pH and temperature on fluorescent calcium indicators as determined with Chelex-100 and EDTA buffer systems. Biochem Biophys Res Commun. 1990 Aug 31;171(1):102–108. doi: 10.1016/0006-291x(90)91362-v. [DOI] [PubMed] [Google Scholar]
- Leli U., Hauser G. Chlorpromazine induces accumulation of inositol phosphates in C6 glioma cells. Biochem Biophys Res Commun. 1986 Mar 13;135(2):465–472. doi: 10.1016/0006-291x(86)90017-3. [DOI] [PubMed] [Google Scholar]
- Lew R. R. Calcium activates an electrogenic proton pump in neurospora plasma membrane. Plant Physiol. 1989 Sep;91(1):213–216. doi: 10.1104/pp.91.1.213. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lew R. R., Garrill A., Covic L., Heath I. B., Serlin B. S. Novel ion channels in the protists, Mougeotia and Saprolegnia, using sub-gigaseals. FEBS Lett. 1992 Oct 5;310(3):219–222. doi: 10.1016/0014-5793(92)81336-k. [DOI] [PubMed] [Google Scholar]
- Madden K., Costigan C., Snyder M. Cell polarity and morphogenesis in Saccharomyces cerevisiae. Trends Cell Biol. 1992 Jan;2(1):22–29. doi: 10.1016/0962-8924(92)90140-i. [DOI] [PubMed] [Google Scholar]
- Miki M. Resonance energy transfer between points in a reconstituted skeletal muscle thin filament. A conformational change of the thin filament in response to a change in Ca2+ concentration. Eur J Biochem. 1990 Jan 12;187(1):155–162. doi: 10.1111/j.1432-1033.1990.tb15289.x. [DOI] [PubMed] [Google Scholar]
- Miller A. J., Vogg G., Sanders D. Cytosolic calcium homeostasis in fungi: roles of plasma membrane transport and intracellular sequestration of calcium. Proc Natl Acad Sci U S A. 1990 Dec;87(23):9348–9352. doi: 10.1073/pnas.87.23.9348. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Moore A. L., Akerman K. E. Ca2+ stimulation of the external NADH dehydrogenase in Jerusalem artichoke (Helianthus tuberosum) mitochondria. Biochem Biophys Res Commun. 1982 Nov 30;109(2):513–517. doi: 10.1016/0006-291x(82)91751-x. [DOI] [PubMed] [Google Scholar]
- Obermeyer G., Weisenseel M. H. Calcium channel blocker and calmodulin antagonists affect the gradient of free calcium ions in lily pollen tubes. Eur J Cell Biol. 1991 Dec;56(2):319–327. [PubMed] [Google Scholar]
- Ohsumi Y., Anraku Y. Calcium transport driven by a proton motive force in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem. 1983 May 10;258(9):5614–5617. [PubMed] [Google Scholar]
- Okagaki T., Higashi-Fujime S., Kohama K. Ca2+ activates actin-filament sliding on scallop myosin but inhibits that on Physarum myosin. J Biochem. 1989 Dec;106(6):955–957. doi: 10.1093/oxfordjournals.jbchem.a122980. [DOI] [PubMed] [Google Scholar]
- Ottensmeyer F. P., Andrew J. W. High-resolution microanalysis of biological specimens by electron energy loss spectroscopy and by electron spectroscopic imaging. J Ultrastruct Res. 1980 Sep;72(3):336–348. doi: 10.1016/s0022-5320(80)90069-6. [DOI] [PubMed] [Google Scholar]
- Pollard T. D. Actin. Curr Opin Cell Biol. 1990 Feb;2(1):33–40. doi: 10.1016/s0955-0674(05)80028-6. [DOI] [PubMed] [Google Scholar]
- Rathore K. S., Cork R. J., Robinson K. R. A cytoplasmic gradient of Ca2+ is correlated with the growth of lily pollen tubes. Dev Biol. 1991 Dec;148(2):612–619. doi: 10.1016/0012-1606(91)90278-b. [DOI] [PubMed] [Google Scholar]
- Reissig J. L., Kinney S. G. Calcium as a branching signal in Neurospora crassa. J Bacteriol. 1983 Jun;154(3):1397–1402. doi: 10.1128/jb.154.3.1397-1402.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Roe M. W., Lemasters J. J., Herman B. Assessment of Fura-2 for measurements of cytosolic free calcium. Cell Calcium. 1990 Feb-Mar;11(2-3):63–73. doi: 10.1016/0143-4160(90)90060-8. [DOI] [PubMed] [Google Scholar]
- Rudolph H. K., Antebi A., Fink G. R., Buckley C. M., Dorman T. E., LeVitre J., Davidow L. S., Mao J. I., Moir D. T. The yeast secretory pathway is perturbed by mutations in PMR1, a member of a Ca2+ ATPase family. Cell. 1989 Jul 14;58(1):133–145. doi: 10.1016/0092-8674(89)90410-8. [DOI] [PubMed] [Google Scholar]
- Saavedra-Molina A., Uribe S., Devlin T. M. Control of mitochondrial matrix calcium: studies using fluo-3 as a fluorescent calcium indicator. Biochem Biophys Res Commun. 1990 Feb 28;167(1):148–153. doi: 10.1016/0006-291x(90)91743-c. [DOI] [PubMed] [Google Scholar]
- Schmid J., Harold F. M. Dual roles for calcium ions in apical growth of Neurospora crassa. J Gen Microbiol. 1988 Sep;134(9):2623–2631. doi: 10.1099/00221287-134-9-2623. [DOI] [PubMed] [Google Scholar]
- Shuman H., Chang C. F., Somlyo A. P. Elemental imaging and resolution in energy-filtered conventional electron microscopy. Ultramicroscopy. 1986;19(2):121–133. doi: 10.1016/0304-3991(86)90201-9. [DOI] [PubMed] [Google Scholar]
- Speksnijder J. E., Corson D. W., Sardet C., Jaffe L. F. Free calcium pulses following fertilization in the ascidian egg. Dev Biol. 1989 Sep;135(1):182–190. doi: 10.1016/0012-1606(89)90168-1. [DOI] [PubMed] [Google Scholar]
- Stroobant P., Scarborough G. A. Active transport of calcium in Neurospora plasma membrane vesicles. Proc Natl Acad Sci U S A. 1979 Jul;76(7):3102–3106. doi: 10.1073/pnas.76.7.3102. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Suryanarayana K., Thomas D. D., Mutus B. Calmodulin from the water mold Achlya ambisexualis: isolation and characterization. Cell Biol Int Rep. 1985 Apr;9(4):389–400. doi: 10.1016/0309-1651(85)90034-7. [DOI] [PubMed] [Google Scholar]
- Tang S., Beeler T. Optical response of the indicator chlortetracycline to membrane potential. Cell Calcium. 1990 Jun-Jul;11(6):425–429. doi: 10.1016/0143-4160(90)90055-y. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Condeelis J. S. Cytoplasmic structure and contractility in amoeboid cells. Int Rev Cytol. 1979;56:57–144. doi: 10.1016/s0074-7696(08)61821-5. [DOI] [PubMed] [Google Scholar]
- Taylor D. L., Wang Y. L. Fluorescently labelled molecules as probes of the structure and function of living cells. Nature. 1980 Apr 3;284(5755):405–410. doi: 10.1038/284405a0. [DOI] [PubMed] [Google Scholar]
- Tsien R. W., Tsien R. Y. Calcium channels, stores, and oscillations. Annu Rev Cell Biol. 1990;6:715–760. doi: 10.1146/annurev.cb.06.110190.003435. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. Fluorescent indicators of ion concentrations. Methods Cell Biol. 1989;30:127–156. doi: 10.1016/s0091-679x(08)60978-4. [DOI] [PubMed] [Google Scholar]
- Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry. 1980 May 27;19(11):2396–2404. doi: 10.1021/bi00552a018. [DOI] [PubMed] [Google Scholar]
- Uno I., Fukami K., Kato H., Takenawa T., Ishikawa T. Essential role for phosphatidylinositol 4,5-bisphosphate in yeast cell proliferation. Nature. 1988 May 12;333(6169):188–190. doi: 10.1038/333188a0. [DOI] [PubMed] [Google Scholar]
- Vandekerckhove J. Actin-binding proteins. Curr Opin Cell Biol. 1990 Feb;2(1):41–50. doi: 10.1016/s0955-0674(05)80029-8. [DOI] [PubMed] [Google Scholar]
- Wick S. M., Hepler P. K. Selective localization of intracellular Ca2+ with potassium antimonate. J Histochem Cytochem. 1982 Nov;30(11):1190–1204. doi: 10.1177/30.11.6815264. [DOI] [PubMed] [Google Scholar]
- Zhou X. L., Stumpf M. A., Hoch H. C., Kung C. A mechanosensitive channel in whole cells and in membrane patches of the fungus Uromyces. Science. 1991 Sep 20;253(5026):1415–1417. doi: 10.1126/science.1716786. [DOI] [PubMed] [Google Scholar]