Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1986 Sep;50(3):314–352. doi: 10.1128/mr.50.3.314-352.1986

Biosynthesis and metabolism of arginine in bacteria.

R Cunin, N Glansdorff, A Piérard, V Stalon
PMCID: PMC373073  PMID: 3534538

Full text

PDF
314

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALBRECHT A. M., VOGEL H. J. ACETYLORNITHINE DELTA-TRANSAMINASE. PARTIAL PURIFICATION AND REPRESSION BEHAVIOR. J Biol Chem. 1964 Jun;239:1872–1876. [PubMed] [Google Scholar]
  2. Abd-el-Al A. Arginine-auxotrophic phenotype resulting from a mutation in the pryA gene of Escherichia coli B-r. J Bacteriol. 1969 Jan;97(1):466–468. doi: 10.1128/jb.97.1.466-468.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Abd-el-Al A., Ingraham J. L. Cold sensitivity and other phenotypes resulting from mutation in pyrA gene. J Biol Chem. 1969 Aug 10;244(15):4039–4045. [PubMed] [Google Scholar]
  4. Abd-el-Al A., Ingraham J. L. Control of carbamyl phosphate synthesis in Salmonella typhimurium. J Biol Chem. 1969 Aug 10;244(15):4033–4038. [PubMed] [Google Scholar]
  5. Abdelal A. T. Arginine catabolism by microorganisms. Annu Rev Microbiol. 1979;33:139–168. doi: 10.1146/annurev.mi.33.100179.001035. [DOI] [PubMed] [Google Scholar]
  6. Abdelal A. T., Bibb W. F., Nainan O. Carbamate kinase from Pseudomonas aeruginosa: purification, characterization, physiological role, and regulation. J Bacteriol. 1982 Sep;151(3):1411–1419. doi: 10.1128/jb.151.3.1411-1419.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Abdelal A. T., Bussey L., Vickers L. Carbamoylphosphate synthetase from Pseudomonas aeruginosa. Subunit composition, kinetic analysis and regulation. Eur J Biochem. 1983 Jan 1;129(3):697–702. [PubMed] [Google Scholar]
  8. Abdelal A. T., Griego E., Ingraham J. L. Arginine auxotrophic phenotype of mutation in pyrA of Salmonella typhimurium: role of N-acetylornithine in the maturation of mutant carbamylphosphate synthetase. J Bacteriol. 1978 May;134(2):528–536. doi: 10.1128/jb.134.2.528-536.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Abdelal A. T., Griego E., Ingraham J. L. Arginine-sensitive phenotype of mutations in pyrA of Salmonella typhimurium: role of ornithine carbamyltransferase in the assembly of mutant carbamylphosphate synthetase. J Bacteriol. 1976 Oct;128(1):105–113. doi: 10.1128/jb.128.1.105-113.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Abdelal A. T., Ingraham J. L. Carbamylphosphate synthetase from Salmonella typhimurium. Regulations, subunit composition, and function of the subunits. J Biol Chem. 1975 Jun 25;250(12):4410–4417. [PubMed] [Google Scholar]
  11. Abdelal A. T., Kennedy E. H., Nainan O. Ornithine transcarbamylase from Salmonella typhimurium: purification, subunit composition, kinetic analysis, and immunological cross-reactivity. J Bacteriol. 1977 Mar;129(3):1387–1396. doi: 10.1128/jb.129.3.1387-1396.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Abdelal A. T., Nainan O. V. Regulation of N-acetylglutamate synthesis in Salmonella typhimurium. J Bacteriol. 1979 Feb;137(2):1040–1042. doi: 10.1128/jb.137.2.1040-1042.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Anderson P. M. Binding of allosteric effectors to carbamyl-phosphate synthetase from Escherichia coli. Biochemistry. 1977 Feb 22;16(4):587–593. doi: 10.1021/bi00623a005. [DOI] [PubMed] [Google Scholar]
  14. Anderson P. M. Evidence that the catalytic and regulatory functions of carbamylphosphate synthetase from Escherichia coli are not dependent on oligomer formation. Biochemistry. 1977 Feb 22;16(4):583–586. doi: 10.1021/bi00623a004. [DOI] [PubMed] [Google Scholar]
  15. Anderson P. M., Marvin S. V. Effect of allosteric effectors and adenosine triphosphate on the aggregation and rate of inhibition by N-ethylmaleimide of carbamyl phosphate synthetase of Escherichia coli. Biochemistry. 1970 Jan 6;9(1):171–178. doi: 10.1021/bi00803a022. [DOI] [PubMed] [Google Scholar]
  16. Anderson P. M., Meister A. Bicarbonate-dependent cleavage of adenosine triphosphate and other reactions catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry. 1966 Oct;5(10):3157–3163. doi: 10.1021/bi00874a012. [DOI] [PubMed] [Google Scholar]
  17. Anderson P. M., Meister A. Control of Escherichia coli carbamyl phosphate synthetase by purine and pyrimidine nucleotides. Biochemistry. 1966 Oct;5(10):3164–3169. doi: 10.1021/bi00874a013. [DOI] [PubMed] [Google Scholar]
  18. Anderson P. M., Meister A. Evidence for an activated form of carbon dioxide in the reaction catalyzed by Escherichia coli carbamyl phosphate synthetase. Biochemistry. 1965 Dec;4(12):2803–2809. doi: 10.1021/bi00888a034. [DOI] [PubMed] [Google Scholar]
  19. BACHRACH U., PERSKY S., RAZIN S. Metabolism of amines. 2. The oxidation of natural polyamines by Myocobacterium smegmatis. Biochem J. 1960 Aug;76:306–310. doi: 10.1042/bj0760306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. BAICH A., VOGEL H. J. N-Acetyl-gamma-Ilutamokinase and N-acetylglutamic gamma-semialdehyde dehydrogenase: repressible enzymes of arginine synthesis in Escherichia coli. Biochem Biophys Res Commun. 1962 Jun 4;7:491–496. doi: 10.1016/0006-291x(62)90342-x. [DOI] [PubMed] [Google Scholar]
  21. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bachmann B. J., Low K. B., Taylor A. L. Recalibrated linkage map of Escherichia coli K-12. Bacteriol Rev. 1976 Mar;40(1):116–167. doi: 10.1128/br.40.1.116-167.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Barbour M. G., Bayly R. C. Regulation of the meta-cleavage of 4-hydroxyphenylacetic acid by Pseudomonas putida. Biochem Biophys Res Commun. 1976 May 23;76(2):565–571. doi: 10.1016/0006-291x(77)90761-6. [DOI] [PubMed] [Google Scholar]
  24. Barile M. F., Schimke R. T., Riggs D. B. Presence of the arginine dihydrolase pathway in Mycoplasma. J Bacteriol. 1966 Jan;91(1):189–192. doi: 10.1128/jb.91.1.189-192.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Baumberg S. Acetylhistidine as substrate for acetylornithinase: a new system for the selection of arginine regulation mutants in Escherichia coli. Mol Gen Genet. 1970;106(2):162–173. doi: 10.1007/BF00323835. [DOI] [PubMed] [Google Scholar]
  26. Baumberg S., Harwood C. R. Carbon and nitrogen repression of arginine catabolic enzymes in Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):189–196. doi: 10.1128/jb.137.1.189-196.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Baumberg S., Mountain A. Bacillus subtilis 168 mutants resistant to arginine hydroxamate in the presence of ornithine or citrulline. J Gen Microbiol. 1984 May;130(5):1247–1252. doi: 10.1099/00221287-130-5-1247. [DOI] [PubMed] [Google Scholar]
  28. Beacham I. R., Schweitzer B. W., Warrick H. M., Carbon J. The nucleotide sequence of the yeast ARG4 gene. Gene. 1984 Sep;29(3):271–279. doi: 10.1016/0378-1119(84)90056-8. [DOI] [PubMed] [Google Scholar]
  29. Beeftinck F., Cunin R., Glansdorff N. Arginine gene duplications in recombination proficient and deficient strains of Escherichia coli K 12. Mol Gen Genet. 1974;132(3):241–253. doi: 10.1007/BF00269397. [DOI] [PubMed] [Google Scholar]
  30. Bencini D. A., Houghton J. E., Hoover T. A., Foltermann K. F., Wild J. R., O'Donovan G. A. The DNA sequence of argI from Escherichia coli K12. Nucleic Acids Res. 1983 Dec 10;11(23):8509–8518. doi: 10.1093/nar/11.23.8509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Beny G., Boyen A., Charlier D., Lissens W., Feller A., Glansdorff N. Promoter mapping and selection of operator mutants by using insertion of bacteriophage Mu in the argECBH divergent operon of Escherichia coli K-12. J Bacteriol. 1982 Jul;151(1):62–67. doi: 10.1128/jb.151.1.62-67.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Beny G., Cunin R., Glansdorff N., Boyen A., Charlier J., Kelker N. Transcription of Regions within the divergent argECBH operon of Escherichia coli: evidence for lack of an attenuation mechanism. J Bacteriol. 1982 Jul;151(1):58–61. doi: 10.1128/jb.151.1.58-61.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Besemer J., Görtz G., Charlier D. Deletions and DNA rearrangements within the transposable DNA element IS2. A model for the creation of palindromic DNA by DNA repair synthesis. Nucleic Acids Res. 1980 Dec 11;8(23):5825–5833. doi: 10.1093/nar/8.23.5825. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Billheimer J. T., Carnevale H. N., Leisinger T., Eckhardt T., Jones E. E. Ornithine delta-transaminase activity in Escherichia coli: its identity with acetylornithine delta-transaminase. J Bacteriol. 1976 Sep;127(3):1315–1323. doi: 10.1128/jb.127.3.1315-1323.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Billheimer J. T., Shen M. Y., Carnevale H. N., Horton H. R., Jones E. E. Isolation and characterization of acetylornithine delta-transaminase of wild-type Escherichia coli W. Comparison with arginine-inducible acetylornithine delta-transaminase. Arch Biochem Biophys. 1979 Jul;195(2):401–413. doi: 10.1016/0003-9861(79)90367-9. [DOI] [PubMed] [Google Scholar]
  36. Blakemore R. P., Canale-Parola E. Arginine catabolism by Treponema denticola. J Bacteriol. 1976 Nov;128(2):616–622. doi: 10.1128/jb.128.2.616-622.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Boettcher B. R., Meister A. Covalent modification of the active site of carbamyl phosphate synthetase by 5'-p-fluorosulfonylbenzoyladenosine. Direct evidence for two functionally different ATP-binding sites. J Biol Chem. 1980 Aug 10;255(15):7129–7133. [PubMed] [Google Scholar]
  38. Bouvier J., Patte J. C., Stragier P. Multiple regulatory signals in the control region of the Escherichia coli carAB operon. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4139–4143. doi: 10.1073/pnas.81.13.4139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Boyen A., Piette J., Cunin R., Glansdorff N. Enhancement of translation efficiency in Escherichia coli by mutations in a proximal domain of messenger RNA. J Mol Biol. 1982 Dec 15;162(3):715–720. doi: 10.1016/0022-2836(82)90400-4. [DOI] [PubMed] [Google Scholar]
  40. Bretscher A. P., Baumberg S. Divergent transcription of the argECBH cluster of escherichia coli k12. Mutations which alter the control of enzyme synthesis. J Mol Biol. 1976 Apr 5;102(2):205–220. doi: 10.1016/s0022-2836(76)80049-6. [DOI] [PubMed] [Google Scholar]
  41. Brohn F., Tchen T. T. A single transaminase for 1,4-diaminobutane and 4-aminobutyrate in a Pseudomonas species. Biochem Biophys Res Commun. 1971 Nov 5;45(3):578–582. doi: 10.1016/0006-291x(71)90456-6. [DOI] [PubMed] [Google Scholar]
  42. Bussey L. B., Ingraham J. L. A regulatory gene (use) affecting the expression of pyrA and certain other pyrimidine genes. J Bacteriol. 1982 Jul;151(1):144–152. doi: 10.1128/jb.151.1.144-152.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Callewaert D. M., Rosemblatt M. S., Suzuki K., Tchen T. T. Succinic semialdehyde dehydrogenase from a Pseudomonas species. I. Purification and chemical properties. J Biol Chem. 1973 Sep 10;248(17):6009–6013. [PubMed] [Google Scholar]
  44. Callewaert D. M., Rosemblatt M. S., Tchen T. T. Purification and properties of 3-aminopropanal dehydrogenase from a Pseudomonas species. Biochemistry. 1974 Sep 24;13(20):4181–4184. doi: 10.1021/bi00717a018. [DOI] [PubMed] [Google Scholar]
  45. Callewaert D. M., Rosemblatt M. S., Tchen T. T. Purification and properties of 4-aminobutanal dehydrogenase from a Pseudomonas species. J Biol Chem. 1974 Mar 25;249(6):1737–1741. [PubMed] [Google Scholar]
  46. Casadaban M. J., Cohen S. N. Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci U S A. 1979 Sep;76(9):4530–4533. doi: 10.1073/pnas.76.9.4530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Casey C. A., Anderson P. M. Glutamine- and N-acetyl-L-glutamate-dependent carbamoyl phosphate synthetase from Micropterus salmoides. Purification, properties, and inhibition by glutamine analogs. J Biol Chem. 1983 Jul 25;258(14):8723–8732. [PubMed] [Google Scholar]
  48. Celis R. T. Chain-terminating mutants affecting a periplasmic binding protein involved in the active transport of arginine and ornithine in Escherichia coli. J Biol Chem. 1981 Jan 25;256(2):773–779. [PubMed] [Google Scholar]
  49. Celis R. T. Mapping of two loci affecting the synthesis and structure of a periplasmic protein involved in arginine and ornithine transport in Escherichia coli K-12. J Bacteriol. 1982 Sep;151(3):1314–1319. doi: 10.1128/jb.151.3.1314-1319.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  50. Celis R. T. Phosphorylation in vivo and in vitro of the arginine-ornithine periplasmic transport protein of Escherichia coli. Eur J Biochem. 1984 Dec 3;145(2):403–411. doi: 10.1111/j.1432-1033.1984.tb08568.x. [DOI] [PubMed] [Google Scholar]
  51. Celis T. F., Maas W. K. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. IV. Further studies on the role of arginine transfer RNA repression of the enzymes of arginine biosynthesis. J Mol Biol. 1971 Nov 28;62(1):179–188. doi: 10.1016/0022-2836(71)90138-0. [DOI] [PubMed] [Google Scholar]
  52. Charlier D., Crabeel M., Cunin R., Glansdorff N. Tandem and inverted repeats of arginine genes in Escherichia coli: structural and evolutionary considerations. Mol Gen Genet. 1979 Jul 2;174(1):75–88. doi: 10.1007/BF00433308. [DOI] [PubMed] [Google Scholar]
  53. Charlier D., Piette J., Glansdorff N. IS3 can function as a mobile promoter in E. coli. Nucleic Acids Res. 1982 Oct 11;10(19):5935–5948. doi: 10.1093/nar/10.19.5935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Charlier D., Severne Y., Zafarullah M., Glansdorff N. Turn-on of inactive genes by promoter recruitment in Escherichia coli: inverted repeats resulting in artificial divergent operons. Genetics. 1983 Nov;105(3):469–488. doi: 10.1093/genetics/105.3.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Charlier J., Gerlo E. Arginyl-tRNA synthetase from Escherichia coli. Influence of arginine biosynthetic precursors on the charging of arginine-acceptor tRNA with [14C]arginine. Eur J Biochem. 1976 Nov 1;70(1):137–145. doi: 10.1111/j.1432-1033.1976.tb10964.x. [DOI] [PubMed] [Google Scholar]
  56. Condon S., Collins J. K., O'donovan G. A. Regulation of arginine and pyrimidine biosynthesis in Pseudomonas putida. J Gen Microbiol. 1976 Feb;92(2):375–383. doi: 10.1099/00221287-92-2-375. [DOI] [PubMed] [Google Scholar]
  57. Costilow R. N., Cooper D. Identity of proline dehydrogenase and delta1-pyrroline-5-carboxylic acid reductase in Clostridium sporogenes. J Bacteriol. 1978 Apr;134(1):139–146. doi: 10.1128/jb.134.1.139-146.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  58. Costilow R. N., Laycock L. Ornithine cyclase (deaminating). Purification of a protein that converts ornithine to proline and definition of the optimal assay conditions. J Biol Chem. 1971 Nov;246(21):6655–6660. [PubMed] [Google Scholar]
  59. Costilow R. N., Laycock L. Reactions involved in the conversion of ornithine to proline in Clostridia. J Bacteriol. 1969 Nov;100(2):662–667. doi: 10.1128/jb.100.2.662-667.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Crabeel M., Charlier D., Boyen A., Cunin R., Glansdorff N. Mutant selection in the control region of the arg ECBH bipolar operon of Escherichia coli. Arch Int Physiol Biochim. 1974 Dec;82(5):973–974. [PubMed] [Google Scholar]
  61. Crabeel M., Charlier D., Cunin R., Boyen A., Glansdorff N., Piérard A. Accumulation of arginine precursors in Escherichia coli: effects on growth, enzyme repression, and application to the forward selection of arginine auxotrophs. J Bacteriol. 1975 Sep;123(3):898–904. doi: 10.1128/jb.123.3.898-904.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Crabeel M., Charlier D., Cunin R., Glansdorff N. Cloning and endonuclease restriction analysis of argF and of the control region of the argECBH bipolar operon in Escherichia coli. Gene. 1979 Mar;5(3):207–231. doi: 10.1016/0378-1119(79)90079-9. [DOI] [PubMed] [Google Scholar]
  63. Crabeel M., Charlier D., Weyens G., Feller A., Piérard A., Glansdorff N. Use of gene cloning to determine polarity of an operon: genes carAB of Escherichia coli. J Bacteriol. 1980 Aug;143(2):921–925. doi: 10.1128/jb.143.2.921-925.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  64. Crane C. J., Abdelal A. T. Regulation of carbamylphosphate synthesis in Serratia marcescens. J Bacteriol. 1980 Aug;143(2):588–593. doi: 10.1128/jb.143.2.588-593.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Crow V. L., Thomas T. D. Arginine metabolism in lactic streptococci. J Bacteriol. 1982 Jun;150(3):1024–1032. doi: 10.1128/jb.150.3.1024-1032.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Cunin R., Boyen A., Pouwels P., Glansdorff N., Crabeel M. Parameters of gene expression in the bipolar argECBH operon of E. coli K12. The question of translational control. Mol Gen Genet. 1975 Sep 15;140(1):51–60. doi: 10.1007/BF00268988. [DOI] [PubMed] [Google Scholar]
  67. Cunin R., Eckhardt T., Piette J., Boyen A., Piérard A., Glansdorff N. Molecular basis for modulated regulation of gene expression in the arginine regulon of Escherichia coli K-12. Nucleic Acids Res. 1983 Aug 11;11(15):5007–5019. doi: 10.1093/nar/11.15.5007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  68. Cunin R., Kelker N., Boyen A., Yang H., Zubay G., Glansdorff N., Maas W. K. Involvement of arginine in in vitro repression of transcription of arginine genes C, B and H in Escherichia coli K 12. Biochem Biophys Res Commun. 1976 Mar 22;69(2):377–382. doi: 10.1016/0006-291x(76)90532-5. [DOI] [PubMed] [Google Scholar]
  69. DEDEKEN R. H. BIOSYNTH'ESE DE L'ARGININE CHEZ LA LEVURE. I. LE SORT DE LA N-ALPHA-AC'ETYLORINITHINE. Biochim Biophys Acta. 1963 Dec 13;78:606–616. doi: 10.1016/0006-3002(63)91026-6. [DOI] [PubMed] [Google Scholar]
  70. Dalrymple B., Arber W. Promotion of RNA transcription on the insertion element IS30 of E. coli K12. EMBO J. 1985 Oct;4(10):2687–2693. doi: 10.1002/j.1460-2075.1985.tb03988.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. Degryse E. Evidence that yeast acetylornithinase is a carboxypeptidase. FEBS Lett. 1974 Aug 1;43(3):285–288. doi: 10.1016/0014-5793(74)80662-9. [DOI] [PubMed] [Google Scholar]
  72. Degryse E., Glansdorff N., Piérard A. Arginine biosynthesis and degradation in an extreme thermophile, strain Z05. Arch Int Physiol Biochim. 1976;84(3):599–601. [PubMed] [Google Scholar]
  73. Deibel R. H. Utilization of arginine as an energy source for the growth of Streptococcus faecalis. J Bacteriol. 1964 May;87(5):988–992. doi: 10.1128/jb.87.5.988-992.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Dessaux Y., Petit A., Tempé J., Demarez M., Legrain C., Wiame J. M. Arginine catabolism in Agrobacterium strains: role of the Ti plasmid. J Bacteriol. 1986 Apr;166(1):44–50. doi: 10.1128/jb.166.1.44-50.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Donnelly M. I., Cooper R. A. Succinic semialdehyde dehydrogenases of Escherichia coli: their role in the degradation of p-hydroxyphenylacetate and gamma-aminobutyrate. Eur J Biochem. 1981 Jan;113(3):555–561. doi: 10.1111/j.1432-1033.1981.tb05098.x. [DOI] [PubMed] [Google Scholar]
  76. Donnelly M. I., Cooper R. A. Two succinic semialdehyde dehydrogenases are induced when Escherichia coli K-12 Is grown on gamma-aminobutyrate. J Bacteriol. 1981 Mar;145(3):1425–1427. doi: 10.1128/jb.145.3.1425-1427.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Dover S., Halpern Y. S. Control of the pathway of -aminobutyrate breakdown in Escherichia coli K-12. J Bacteriol. 1972 Apr;110(1):165–170. doi: 10.1128/jb.110.1.165-170.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  78. Dover S., Halpern Y. S. Genetic analysis of the gamma-aminobutyrate utilization pathway in Escherichia coli K-12. J Bacteriol. 1974 Feb;117(2):494–501. doi: 10.1128/jb.117.2.494-501.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  79. Dover S., Halpern Y. S. Utilization of -aminobutyric acid as the sole carbon and nitrogen source by Escherichia coli K-12 mutants. J Bacteriol. 1972 Feb;109(2):835–843. doi: 10.1128/jb.109.2.835-843.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Duchange N., Zakin M. M., Ferrara P., Saint-Girons I., Park I., Tran S. V., Py M. C., Cohen G. N. Structure of the metJBLF cluster in Escherichia coli K12. Sequence of the metB structural gene and of the 5'- and 3'-flanking regions of the metBL operon. J Biol Chem. 1983 Dec 25;258(24):14868–14871. [PubMed] [Google Scholar]
  81. Dundas I. E., Halvorson H. O. Arginine metabolism in Halobacterium salinarium, an obligately halophilic bacterium. J Bacteriol. 1966 Jan;91(1):113–119. doi: 10.1128/jb.91.1.113-119.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Dyer J. K., Costilow R. N. 2,4-diaminovaleric acid: an intermediate in the anaerobic oxidation of ornithine by Clostridium sticklandii. J Bacteriol. 1970 Jan;101(1):77–83. doi: 10.1128/jb.101.1.77-83.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Dyer J. K., Costilow R. N. Fermentation of ornithine by Clostridium sticklandii. J Bacteriol. 1968 Nov;96(5):1617–1622. doi: 10.1128/jb.96.5.1617-1622.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. ENNIS H. L., GORINI L. Control of arginine biosynthesis in strains of Escherichia coli not repressible by arginine. J Mol Biol. 1961 Aug;3:439–446. doi: 10.1016/s0022-2836(61)80056-9. [DOI] [PubMed] [Google Scholar]
  85. Ellis J. G., Kerr A., Tempé J., Petit A. Arginine catabolism: a new function of both octopine and nopaline Ti-plasmids of Agrobacterium. Mol Gen Genet. 1979 Jun 20;173(3):263–269. doi: 10.1007/BF00268636. [DOI] [PubMed] [Google Scholar]
  86. Elseviers D., Cunin R., Glansdorff N. Control regions within the argECBH gene cluster of Escherichia coli K12. Mol Gen Genet. 1972;117(4):349–366. doi: 10.1007/BF00333028. [DOI] [PubMed] [Google Scholar]
  87. Emery T. Hydroxamic acids of natural origin. Adv Enzymol Relat Areas Mol Biol. 1971;35:135–185. doi: 10.1002/9780470122808.ch4. [DOI] [PubMed] [Google Scholar]
  88. Falmagne P., Portetelle D., Stalon V. Immunological and structural relatedness of catabolic ornithine carbamoyltransferases and the anabolic enzymes of enterobacteria. J Bacteriol. 1985 Feb;161(2):714–719. doi: 10.1128/jb.161.2.714-719.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Fan C. L., Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Transport of lysine, ornithine, and arginine. J Biol Chem. 1972 Apr 25;247(8):2283–2288. [PubMed] [Google Scholar]
  90. Fanburg B. L., Posner B. I. Labeling of RNA in the perfused heart: the problem of bacterial contamination. Biochim Biophys Acta. 1969 Jun 17;182(2):577–579. doi: 10.1016/0005-2787(69)90214-7. [DOI] [PubMed] [Google Scholar]
  91. Fenske J. D., Kenny G. E. Role of arginine deiminase in growth of Mycoplasma hominis. J Bacteriol. 1976 Apr;126(1):501–510. doi: 10.1128/jb.126.1.501-510.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  92. Forsyth G. W., Theil E. C., Jones E. E., Vogel H. J. Isolation and characterization of arginine-inducible acetylornithine delta-transaminase from Escherichia coli. J Biol Chem. 1970 Oct 25;245(20):5354–5359. [PubMed] [Google Scholar]
  93. Fox G. E., Stackebrandt E., Hespell R. B., Gibson J., Maniloff J., Dyer T. A., Wolfe R. S., Balch W. E., Tanner R. S., Magrum L. J. The phylogeny of prokaryotes. Science. 1980 Jul 25;209(4455):457–463. doi: 10.1126/science.6771870. [DOI] [PubMed] [Google Scholar]
  94. Friedrich B., Friedrich C. G., Magasanik B. Catabolic N2-acetylornithine 5-aminotransferase of Klebsiella aerogenes: control of synthesis by induction, catabolite repression, and activation by glutamine synthetase. J Bacteriol. 1978 Feb;133(2):686–691. doi: 10.1128/jb.133.2.686-691.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Friedrich B., Magasanik B. Enzymes of agmatine degradation and the control of their synthesis in Klebsiella aerogenes. J Bacteriol. 1979 Mar;137(3):1127–1133. doi: 10.1128/jb.137.3.1127-1133.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  96. Friedrich B., Magasanik B. Utilization of arginine by Klebsiella aerogenes. J Bacteriol. 1978 Feb;133(2):680–685. doi: 10.1128/jb.133.2.680-685.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Früh H., Leisinger T. Properties and localization of N-acetylglutamate deacetylase from Pseudomonas aeruginosa. J Gen Microbiol. 1981 Jul;125(1):1–10. doi: 10.1099/00221287-125-1-1. [DOI] [PubMed] [Google Scholar]
  98. GORINI L., GUNDERSEN W., BURGER M. Genetics of regulation of enzyme synthesis in the arginine biosynthetic pathway of Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:173–182. doi: 10.1101/sqb.1961.026.01.022. [DOI] [PubMed] [Google Scholar]
  99. Gallant J. A. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
  100. Gardner M. M., Hennig D. O., Kelln R. A. Control of arg gene expression in Salmonella typhimurium by the arginine repressor from Escherichia coli K-12. Mol Gen Genet. 1983;189(3):458–462. doi: 10.1007/BF00325909. [DOI] [PubMed] [Google Scholar]
  101. Ghosal D., Saedler H. DNA sequence of the mini-insertion IS2--6 and its relation to the sequence of IS2. Nature. 1978 Oct 19;275(5681):611–617. doi: 10.1038/275611a0. [DOI] [PubMed] [Google Scholar]
  102. Gigot D., Glansdorff N., Legrain C., Piérard A., Stalon V., Konigsberg W., Caplier I., Strosberg A. D., Hervé G. Comparison of the N-terminal sequences of aspartate and ornithine carbamoyltransferases of Escherichia coli. FEBS Lett. 1977 Sep 1;81(1):28–32. doi: 10.1016/0014-5793(77)80920-4. [DOI] [PubMed] [Google Scholar]
  103. Glansdorff N., Charlier D., Zafarullah M. Activation of gene expression by IS2 and IS3. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 1):153–156. doi: 10.1101/sqb.1981.045.01.024. [DOI] [PubMed] [Google Scholar]
  104. Glansdorff N., Dambly C., Palchaudhuri S., Crabeel M., Piérard A., Halleux P. Isolation and heteroduplex mapping of a lambda transducing bacteriophage carrying the structural genes for carbamoylphosphate synthase: regulation of enzyme synthesis in Escherichia coli K-12 lysogens. J Bacteriol. 1976 Jul;127(1):302–308. doi: 10.1128/jb.127.1.302-308.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Glansdorff N., Sand G., Verhoef C. The dual genetic control of ornithine transcarbamylase synthesis in Escherichia coli K12. Mutat Res. 1967 Nov-Dec;4(6):743–751. doi: 10.1016/0027-5107(67)90083-8. [DOI] [PubMed] [Google Scholar]
  106. Gorini L. ANTAGONISM BETWEEN SUBSTRATE AND REPRESSOR IN CONTROLLING THE FORMATION OF A BIOSYNTHETIC ENZYME. Proc Natl Acad Sci U S A. 1960 May;46(5):682–690. doi: 10.1073/pnas.46.5.682. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Guha A. Divergent orientation of transcription from the biotin locus of Escherichia coli. J Mol Biol. 1971 Feb 28;56(1):53–62. doi: 10.1016/0022-2836(71)90083-0. [DOI] [PubMed] [Google Scholar]
  108. Guirard B. M., Snell E. E. Purification and properties of ornithine decarboxylase from Lactobacillus sp. 30a. J Biol Chem. 1980 Jun 25;255(12):5960–5964. [PubMed] [Google Scholar]
  109. HATT J. L., ROCHE J., THOAI N. V., TRAN THI A. N. Métabolisme des dérivés guanidylés. VI. Dégradation des dérivés guanidiques chez Streptomyces griseus (Waksman). Biochim Biophys Acta. 1956 Nov;22(2):337–341. doi: 10.1016/0006-3002(56)90160-3. [DOI] [PubMed] [Google Scholar]
  110. Haas D., Holloway B. W., Schamböck A., Leisinger T. The genetic organization of arginine biosynthesis in Pseudomonas aeruginosa. Mol Gen Genet. 1977 Jul 7;154(1):7–22. doi: 10.1007/BF00265571. [DOI] [PubMed] [Google Scholar]
  111. Haas D., Kurer V., Leisinger T. N-acetylglutamate synthetase of Pseudomonas aeruginosa. An assay in vitro and feedback inhibition by arginine. Eur J Biochem. 1972 Dec 4;31(2):290–295. doi: 10.1111/j.1432-1033.1972.tb02531.x. [DOI] [PubMed] [Google Scholar]
  112. Haas D., Leisinger T. Multiple control of N-acetylglutamate synthetase from Pseudomonas aeruginosa: synergistic inhibition by acetylglutamate and polyamines. Biochem Biophys Res Commun. 1974 Sep 9;60(1):42–47. doi: 10.1016/0006-291x(74)90169-7. [DOI] [PubMed] [Google Scholar]
  113. Haas D., Leisinger T. N-acetylglutamate 5-phosphotransferase of Pseudomonas aeruginosa. Catalytic and regulatory properties. Eur J Biochem. 1975 Mar 17;52(2):377–393. [PubMed] [Google Scholar]
  114. Haas D., Matsumoto H., Moretti P., Stalon V., Mercenier A. Arginine degradation in Pseudomonas aeruginosa mutants blocked in two arginine catabolic pathways. Mol Gen Genet. 1984;193(3):437–444. doi: 10.1007/BF00382081. [DOI] [PubMed] [Google Scholar]
  115. Hall B. G., Gallant J. A. On the rate of messenger decay during amino acid starvation. J Mol Biol. 1973 Jan;73(1):121–124. doi: 10.1016/0022-2836(73)90163-0. [DOI] [PubMed] [Google Scholar]
  116. Hall B. G., Yokoyama S., Calhoun D. H. Role of cryptic genes in microbial evolution. Mol Biol Evol. 1983 Dec;1(1):109–124. doi: 10.1093/oxfordjournals.molbev.a040300. [DOI] [PubMed] [Google Scholar]
  117. Hartmann R., Sickinger H. D., Oesterhelt D. Anaerobic growth of halobacteria. Proc Natl Acad Sci U S A. 1980 Jul;77(7):3821–3825. doi: 10.1073/pnas.77.7.3821. [DOI] [PMC free article] [PubMed] [Google Scholar]
  118. Harwood C. R., Baumberg S. Arginine hydroxamate-resistant mutants of Bacillus subtilis with altered control of arginine metabolism. J Gen Microbiol. 1977 May;100(1):177–188. doi: 10.1099/00221287-100-1-177. [DOI] [PubMed] [Google Scholar]
  119. Hass D., Evans R., Mercenier A., Simon J. P., Stalon V. Genetic and physiological characterization of Pseudomonas aeruginosa mutants affected in the catabolic ornithine carbamoyltransferase. J Bacteriol. 1979 Sep;139(3):713–720. doi: 10.1128/jb.139.3.713-720.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Henner D. J., Hoch J. A. The Bacillus subtilis chromosome. Microbiol Rev. 1980 Mar;44(1):57–82. doi: 10.1128/mr.44.1.57-82.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  121. Hilger F., Simon J. P., Stalon V. Yeast argininosuccinate synthetase. Purification; structural and kinetic properties. Eur J Biochem. 1979 Feb 15;94(1):153–163. doi: 10.1111/j.1432-1033.1979.tb12882.x. [DOI] [PubMed] [Google Scholar]
  122. Hinton D. M., Musso R. E. Transcription initiation sites within an IS2 insertion in a Gal-constitutive mutant of Escherichia coli. Nucleic Acids Res. 1982 Aug 25;10(16):5015–5031. doi: 10.1093/nar/10.16.5015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  123. Hirshfield I. N., Horn P. C., Hopwood D. A., Maas W. K., DeDeken R. Studies on the mechanism of repression of arginine biosynthesis in Escherichia coli. 3. Repression of enzymes of arginine biosynthesis in arginyl-tRNA synthetase mutants. J Mol Biol. 1968 Jul 14;35(1):83–93. doi: 10.1016/s0022-2836(68)80038-5. [DOI] [PubMed] [Google Scholar]
  124. Hoare D. S., Hoare S. L. Feedback regulation of arginine biosynthesis in blue-green algae and photosynthetic bacteria. J Bacteriol. 1966 Aug;92(2):375–379. doi: 10.1128/jb.92.2.375-379.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Hood W., Carr N. G. Apparent lack of control by repression of arginine metabolism in blue-green algae. J Bacteriol. 1971 Jul;107(1):365–367. doi: 10.1128/jb.107.1.365-367.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. Hoover T. A., Roof W. D., Foltermann K. F., O'Donovan G. A., Bencini D. A., Wild J. R. Nucleotide sequence of the structural gene (pyrB) that encodes the catalytic polypeptide of aspartate transcarbamoylase of Escherichia coli. Proc Natl Acad Sci U S A. 1983 May;80(9):2462–2466. doi: 10.1073/pnas.80.9.2462. [DOI] [PMC free article] [PubMed] [Google Scholar]
  127. Horwich A. L., Fenton W. A., Williams K. R., Kalousek F., Kraus J. P., Doolittle R. F., Konigsberg W., Rosenberg L. E. Structure and expression of a complementary DNA for the nuclear coded precursor of human mitochondrial ornithine transcarbamylase. Science. 1984 Jun 8;224(4653):1068–1074. doi: 10.1126/science.6372096. [DOI] [PubMed] [Google Scholar]
  128. Houghton J. E., Bencini D. A., O'Donovan G. A., Wild J. R. Protein differentiation: a comparison of aspartate transcarbamoylase and ornithine transcarbamoylase from Escherichia coli K-12. Proc Natl Acad Sci U S A. 1984 Aug;81(15):4864–4868. doi: 10.1073/pnas.81.15.4864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Hu M., Deonier R. C. Mapping of IS1 elements flanking the argF gene region on the Escherichia coli K-12 chromosome. Mol Gen Genet. 1981;181(2):222–229. doi: 10.1007/BF00268430. [DOI] [PubMed] [Google Scholar]
  130. Hutson J. Y., Downing M. Pyrimidine biosynthesis in Lactobacillus leichmannii. J Bacteriol. 1968 Oct;96(4):1249–1254. doi: 10.1128/jb.96.4.1249-1254.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Isaac J. H., Holloway B. W. Control of arginine biosynthesis in Pseudomonas aeruginosa. J Gen Microbiol. 1972 Dec;73(3):427–438. doi: 10.1099/00221287-73-3-427. [DOI] [PubMed] [Google Scholar]
  132. Issaly I. M., Issaly A. S. Control of ornithine carbamoyltransferase activityby arginase in Bacillus subtilis. Eur J Biochem. 1974 Dec 2;49(3):485–495. doi: 10.1111/j.1432-1033.1974.tb03853.x. [DOI] [PubMed] [Google Scholar]
  133. Issaly I. M., Issaly A. S., Reissig J. L. Carbamyl phosphate biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1970 Mar 18;198(3):482–494. doi: 10.1016/0005-2744(70)90126-9. [DOI] [PubMed] [Google Scholar]
  134. Itikawa H., Baumberg S., Vogel H. J. Enzymic basis for a genetic suppression: accumulation and deacylation of N-acetylglutamic gamma-semialdehyde in enterobacterial mutants. Biochim Biophys Acta. 1968 Jul 9;159(3):547–550. doi: 10.1016/0005-2744(68)90142-3. [DOI] [PubMed] [Google Scholar]
  135. JAKOBY W. B., FREDERICKS J. Pyrrolidine and putrescine metabolism: gamma-aminobutyraldehyde dehydrogenase. J Biol Chem. 1959 Aug;234(8):2145–2150. [PubMed] [Google Scholar]
  136. Jacoby G. A. Control of the argECBH cluster in Escherichia coli. Mol Gen Genet. 1972;117(4):337–348. doi: 10.1007/BF00333027. [DOI] [PubMed] [Google Scholar]
  137. Jacoby G. A., Gorini L. A unitary account of the repression mechanism of arginine biosynthesis in Escherichia coli. I. The genetic evidence. J Mol Biol. 1969 Jan 14;39(1):73–87. doi: 10.1016/0022-2836(69)90334-9. [DOI] [PubMed] [Google Scholar]
  138. Jacoby G. A. Mapping the gene determining ornithine transcarbamylase and its operator in Escherichia coli B. J Bacteriol. 1971 Nov;108(2):645–651. doi: 10.1128/jb.108.2.645-651.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  139. Jaurin B., Normark S. Insertion of IS2 creates a novel ampC promoter in Escherichia coli. Cell. 1983 Mar;32(3):809–816. doi: 10.1016/0092-8674(83)90067-3. [DOI] [PubMed] [Google Scholar]
  140. Jeng I. M., Somack R., Barker H. A. Ornithine degradation in Clostridium sticklandii; pyridoxal phosphate and coenzyme A dependent thiolytic cleavage of 2-amino-4-ketopentanoate to alanine and acetyl coenzyme A. Biochemistry. 1974 Jul 2;13(14):2898–2903. doi: 10.1021/bi00711a019. [DOI] [PubMed] [Google Scholar]
  141. Jenness D. D., Schachman H. K. pryB mutations as suppressors of arginine auxotrophy in Salmonella typhimurium. J Bacteriol. 1980 Jan;141(1):33–40. doi: 10.1128/jb.141.1.33-40.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Jensen K. F., Neuhard J., Schack L. RNA polymerase involvement in the regulation of expression of Salmonella typhimurium pyr genes. Isolation and characterization of a fluorouracil-resistant mutant with high, constitutive expression of the pyrB and pyrE genes due to a mutation in rpoBC. EMBO J. 1982;1(1):69–74. doi: 10.1002/j.1460-2075.1982.tb01126.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  143. Jessop A. P., Clugston C. Amplification of the ArgF region in strain HfrP4X of E. coli K-12. Mol Gen Genet. 1985;201(2):347–350. doi: 10.1007/BF00425683. [DOI] [PubMed] [Google Scholar]
  144. Jessop A. P., Glansdorff N. Genetic factors affecting recovery of nonpoint mutations in the region of a gene coding for ornithine transcarbamylase: involvement of both the F factor in its chromosomal state and the recA gene. Genetics. 1980 Dec;96(4):779–799. doi: 10.1093/genetics/96.4.779. [DOI] [PMC free article] [PubMed] [Google Scholar]
  145. Jukes T. H. Arginine as an evolutionary intruder into protein synthesis. Biochem Biophys Res Commun. 1973 Aug 6;53(3):709–714. doi: 10.1016/0006-291x(73)90151-4. [DOI] [PubMed] [Google Scholar]
  146. KALMAN S. M., DUFFIELD P. H., BRZOZOWSKI T. IDENTITY IN ESCHERICHIA COLI OF CARBAMYL PHOSPHOKINASE AND AN ACTIVITY WHICH CATALYZES AMINO GROUP TRANSFER FROM GLUTAMINE TO ORNITHINE IN CITRULLINE SYNTHESIS. Biochem Biophys Res Commun. 1965 Feb 17;18:530–537. doi: 10.1016/0006-291x(65)90786-2. [DOI] [PubMed] [Google Scholar]
  147. KIM K. H. ISOLATION AND PROPERTIES OF A PUTRESCINE-DEGRADING MUTANT OF ESCHERICHIA COLI. J Bacteriol. 1963 Aug;86:320–323. doi: 10.1128/jb.86.2.320-323.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. KIM K. H., TCHEN T. T. Putrescine--alpha-ketoglutarate trans-aminase in E. coli. Biochem Biophys Res Commun. 1962 Sep 25;9:99–102. doi: 10.1016/0006-291x(62)90095-5. [DOI] [PubMed] [Google Scholar]
  149. Kadner R. J., Maas W. K. Regulatory gene mutations affecting arginine biosynthesis in Escherichia coli. Mol Gen Genet. 1971;111(1):1–14. doi: 10.1007/BF00286549. [DOI] [PubMed] [Google Scholar]
  150. Kalman S. M., Duffield P. H., Brzozowski T. Purification and properties of a bacterial carbamyl phosphate synthetase. J Biol Chem. 1966 Apr 25;241(8):1871–1877. [PubMed] [Google Scholar]
  151. Kaplan J. B., Nichols B. P. Nucleotide sequence of Escherichia coli pabA and its evolutionary relationship to trp(G)D. J Mol Biol. 1983 Aug 15;168(3):451–468. doi: 10.1016/s0022-2836(83)80295-2. [DOI] [PubMed] [Google Scholar]
  152. Kawamura M., Keim P. S., Goto Y., Zalkin H., Heinrikson R. L. Anthranilate synthetase component II from Pseudomonas putida. Covalent structure and identification of the cysteine residue involved in catalysis. J Biol Chem. 1978 Jul 10;253(13):4659–4668. [PubMed] [Google Scholar]
  153. Keevil C. W., Marsh P. D., Ellwood D. C. Regulation of glucose metabolism in oral streptococci through independent pathways of glucose 6-phosphate and glucose 1-phosphate formation. J Bacteriol. 1984 Feb;157(2):560–567. doi: 10.1128/jb.157.2.560-567.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Kelker N. E., Maas W. K., Yang H. L., Zubay G. In vitro synthesis and repression of argininosuccinase in Escherichia coli K12; partial purification of the arginine repressor. Mol Gen Genet. 1976 Feb 27;144(1):17–20. doi: 10.1007/BF00277298. [DOI] [PubMed] [Google Scholar]
  155. Kelker N., Eckhardt T. Regulation of argA operon expression in Escherichia coli K-12: cell-free synthesis of beta-galactosidase under argA control. J Bacteriol. 1977 Oct;132(1):67–72. doi: 10.1128/jb.132.1.67-72.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Kelley R. L., Yanofsky C. Trp aporepressor production is controlled by autogenous regulation and inefficient translation. Proc Natl Acad Sci U S A. 1982 May;79(10):3120–3124. doi: 10.1073/pnas.79.10.3120. [DOI] [PMC free article] [PubMed] [Google Scholar]
  157. Kelln R. A., Kinahan J. J., Foltermann K. F., O'Donovan G. A. Pyrimidine biosynthetic enzymes of Salmonella typhimurium, repressed specifically by growth in the presence of cytidine. J Bacteriol. 1975 Nov;124(2):764–774. doi: 10.1128/jb.124.2.764-774.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Kelln R. A., O'Donovan G. A. Isolation and partial characterization of an argR mutant of Salmonella typhimurium. J Bacteriol. 1976 Nov;128(2):528–535. doi: 10.1128/jb.128.2.528-535.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  159. Kelln R. A., Zak V. L. Arginine regulon control in a Salmonella typhimurium--Escherichia coli hybrid merodiploid. Mol Gen Genet. 1978 May 31;161(3):333–335. doi: 10.1007/BF00331009. [DOI] [PubMed] [Google Scholar]
  160. Kersten H. On the biological significance of modified nucleosides in tRNA. Prog Nucleic Acid Res Mol Biol. 1984;31:59–114. doi: 10.1016/s0079-6603(08)60375-x. [DOI] [PubMed] [Google Scholar]
  161. Khedouri E., Anderson P. M., Meister A. Selective inactivation of the glutamine binding site of Escherichia coli carbamyl phosphate synthetase by 2-amino-4-oxo-5-chloropentanoic acid. Biochemistry. 1966 Nov;5(11):3552–3557. doi: 10.1021/bi00875a024. [DOI] [PubMed] [Google Scholar]
  162. Khramov V. A., Kondrat'eva E. N. Obrazovanie karbamoilfosfata i tsirullina fototrofnymi bakteriiami. Mikrobiologiia. 1981 Sep-Oct;50(5):932–934. [PubMed] [Google Scholar]
  163. Kikuchi A., Gorini L. Similarity of genes argF and argI. Nature. 1975 Aug 21;256(5519):621–624. doi: 10.1038/256621a0. [DOI] [PubMed] [Google Scholar]
  164. Krzyzek R. A., Rogers P. Effect of arginine on the stability and size of argECBH messenger ribonucleic acid in Escherichia coli. J Bacteriol. 1976 Apr;126(1):365–376. doi: 10.1128/jb.126.1.365-376.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  165. Kuo T. T., Stocker B. A. Suppression of proline requirement of proA and proAB deletion mutants in Salmonella typhimurium by mutation to arginine requirement. J Bacteriol. 1969 May;98(2):593–598. doi: 10.1128/jb.98.2.593-598.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  166. Kustu S. G., Ames G. F. The hisP protein, a known histidine transport component in Salmonella typhimurium, is also an arginine transport component. J Bacteriol. 1973 Oct;116(1):107–113. doi: 10.1128/jb.116.1.107-113.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  167. LOUTIT J. S. Studies on nutritionally deficient strains of Pseudomonas aeruginosa. I. The production by x-rays and the isolation of nutritionally deficient strains. Aust J Exp Biol Med Sci. 1952 Aug;30(4):287–294. doi: 10.1038/icb.1952.26. [DOI] [PubMed] [Google Scholar]
  168. Lacroute F., Piérard A., Grenson M., Wiame J. M. The biosynthesis of carbamoyl phosphate in Saccharomyces cerevisiae. J Gen Microbiol. 1965 Jul;40(1):127–142. doi: 10.1099/00221287-40-1-127. [DOI] [PubMed] [Google Scholar]
  169. Laishley E. J., Bernlohr R. W. Regulation of arginine and proline catabolism in Bacillus licheniformis. J Bacteriol. 1968 Aug;96(2):322–329. doi: 10.1128/jb.96.2.322-329.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  170. Laishley E. J., Bernlohr R. W. The regulation and kinetics of the two ornithine transcarbamylase enzymes of Bacillus licheniformis. Biochim Biophys Acta. 1968 Nov 19;167(3):547–554. doi: 10.1016/0005-2744(68)90044-2. [DOI] [PubMed] [Google Scholar]
  171. Lavallé R. Regulation at the level of translation in the arginine pathway of Escherichia coli K12. J Mol Biol. 1970 Jul 28;51(2):449–451. doi: 10.1016/0022-2836(70)90154-3. [DOI] [PubMed] [Google Scholar]
  172. Legrain C., Halleux P., Stalon V., Glansdorff N. The dual genetic control of ornithine carbamolytransferase in Escherichia coli. A case of bacterial hybrid enzymes. Eur J Biochem. 1972 May;27(1):93–102. doi: 10.1111/j.1432-1033.1972.tb01814.x. [DOI] [PubMed] [Google Scholar]
  173. Legrain C., Stalon V., Glansdorff N. Escherichia coli ornithine carbamolytransferase isoenzymes: evolutionary significance and the isolation of lambdaargF and lambdaargI transducing bacteriophages. J Bacteriol. 1976 Oct;128(1):35–38. doi: 10.1128/jb.128.1.35-38.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Legrain C., Stalon V., Glansdorff N., Gigot D., Piéard A., Crabeel M. Structural and regulatory mutations allowing utilization of citrulline or carbamoylaspartate as a source of carbamoylphosphate in Escherichia coli K-12. J Bacteriol. 1976 Oct;128(1):39–48. doi: 10.1128/jb.128.1.39-48.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Legrain C., Stalon V., Noullez J. P., Mercenier A., Simon J. P., Broman K., Wiame J. M. Structure and function of ornithine carbamoyltransferases. Eur J Biochem. 1977 Nov 1;80(2):401–409. doi: 10.1111/j.1432-1033.1977.tb11895.x. [DOI] [PubMed] [Google Scholar]
  176. Legrain C., Stalon V. Ornithine carbamoyltransferase from Escherichia coli W. Purification, structure and steady-state kinetic analysis. Eur J Biochem. 1976 Mar 16;63(1):289–301. doi: 10.1111/j.1432-1033.1976.tb10230.x. [DOI] [PubMed] [Google Scholar]
  177. Leisinger T., Haas D. N-Acetylglutamate synthase of Escherichia coli regulation of synthesis and activity by arginine. J Biol Chem. 1975 Mar 10;250(5):1690–1693. [PubMed] [Google Scholar]
  178. Lesinger T., Haas D., Hegarty M. P. Indospicine as an arginine antagonist in Escherichia coli and Pseudomonas aeruginosa. Biochim Biophys Acta. 1972 Mar 14;262(2):214–219. doi: 10.1016/0005-2787(72)90235-3. [DOI] [PubMed] [Google Scholar]
  179. Li H. C., Buchanan J. M. Biosynthesis of the purines. 33. Catalytic properties of the glutamine site of formylglycinamide ribonucleotide amidotransferase from chicken liver. J Biol Chem. 1971 Aug 10;246(15):4713–4719. [PubMed] [Google Scholar]
  180. Linn T., Goman M., Scaife J. Lambda transducing bacteriophage carrying deletions of the argCBH-rpoBC region of the Escherichia coli chromosome. J Bacteriol. 1979 Nov;140(2):479–489. doi: 10.1128/jb.140.2.479-489.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Lissens W., Cunin R., Kelker N., Glansdorff N., Piérard A. In vitro synthesis of Escherichia coli carbamoylphosphate synthase: evidence for participation of the arginine repressor in cumulative repression. J Bacteriol. 1980 Jan;141(1):58–66. doi: 10.1128/jb.141.1.58-66.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  182. MAAS W. K. STUDIES ON THE MECHANISM OF REPRESSION OF ARGININE BIOSYNTHESIS IN ESCHERICHIA COLI. II. DOMINANCE OF REPRESSIBILITY IN DIPLOIDS. J Mol Biol. 1964 Mar;8:365–370. doi: 10.1016/s0022-2836(64)80200-x. [DOI] [PubMed] [Google Scholar]
  183. MAAS W. K. Studies on repression of arginine biosynthesis in Escherichia coli. Cold Spring Harb Symp Quant Biol. 1961;26:183–191. doi: 10.1101/sqb.1961.026.01.023. [DOI] [PubMed] [Google Scholar]
  184. MAHLER I., NEUMANN I. M., MARMUR J. Studies of genetic-units controlling arginine biosynthesis in Bacillus subtilis. Biochim Biophys Acta. 1963 May 28;72:69–79. [PubMed] [Google Scholar]
  185. Makoff A. J., Radford A. Genetics and biochemistry of carbamoyl phosphate biosynthesis and its utilization in the pyrimidine biosynthetic pathway. Microbiol Rev. 1978 Jun;42(2):307–328. doi: 10.1128/mr.42.2.307-328.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Mann N. H., Mountain A., Munton R. N., Smith M. C., Baumberg S. Transcription analysis of a Bacillus subtilis arg gene following cloning in Escherichia coli in an initially unstable hybrid plasmid. Mol Gen Genet. 1984;197(1):75–81. doi: 10.1007/BF00327925. [DOI] [PubMed] [Google Scholar]
  187. Marvil D. K., Leisinger T. N-acetylglutamate synthase of Escherichia coli: purification, characterization, and molecular properties. J Biol Chem. 1977 May 25;252(10):3295–3303. [PubMed] [Google Scholar]
  188. Matsumoto H., Hosogaya S., Suzuki K., Tazaki T. Arginine gene cluster of Serratia marcescens. Jpn J Microbiol. 1975 Feb;19(1):35–44. doi: 10.1111/j.1348-0421.1975.tb00845.x. [DOI] [PubMed] [Google Scholar]
  189. Matsumoto H., Tazaki T. Genetic recombination in Klebsiella pneumoniae. An approach to genetic linkage mapping. Jpn J Microbiol. 1970 Mar;14(2):129–141. doi: 10.1111/j.1348-0421.1970.tb00500.x. [DOI] [PubMed] [Google Scholar]
  190. McLellan W. L., Vogel H. J. Stability of argECBH messenger RNA under arginine excess or restriction. Biochem Biophys Res Commun. 1973 Dec 19;55(4):1385–1389. doi: 10.1016/s0006-291x(73)80047-6. [DOI] [PubMed] [Google Scholar]
  191. McLellan W. L., Vogel H. J. Translational repression in the arginine system of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1703–1709. doi: 10.1073/pnas.67.4.1703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  192. Mead G. C. The amino acid-fermenting clostridia. J Gen Microbiol. 1971 Jul;67(1):47–56. doi: 10.1099/00221287-67-1-47. [DOI] [PubMed] [Google Scholar]
  193. Meister A., Powers S. G. Glutamine-dependent carbamyl phosphate synthetase: catalysis and regulation. Adv Enzyme Regul. 1977 Oct 3;16:289–315. doi: 10.1016/0065-2571(78)90079-1. [DOI] [PubMed] [Google Scholar]
  194. Menninger J. R., Caplan A. B., Gingrich P. K., Atherly A. G. Tests of the ribosome editor hypothesis. II. Relaxed (relA) and stringent (relA+) E. coli differ in rates of dissociation of peptidyl-tRNA from ribosomes. Mol Gen Genet. 1983;190(2):215–221. doi: 10.1007/BF00330642. [DOI] [PubMed] [Google Scholar]
  195. Mercenier A., Simon J. P., Haas D., Stalon V. Catabolism of L-arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):381–389. doi: 10.1099/00221287-116-2-381. [DOI] [PubMed] [Google Scholar]
  196. Mercenier A., Simon J. P., Vander Wauven C., Haas D., Stalon V. Regulation of enzyme synthesis in the arginine deiminase pathway of Pseudomonas aeruginosa. J Bacteriol. 1980 Oct;144(1):159–163. doi: 10.1128/jb.144.1.159-163.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  197. Mercenier A., Stalon V., Simon J. P., Haas D. Mapping of the arginine deiminase gene in Pseudomonas aeruginosa. J Bacteriol. 1982 Feb;149(2):787–788. doi: 10.1128/jb.149.2.787-788.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  198. Mergeay M., Gigot D., Beckmann J., Glansdorff N., Piérard A. Physiology and genetics of carbamoylphosphate synthesis in Escherichia coli K12. Mol Gen Genet. 1974;133(4):299–316. doi: 10.1007/BF00332706. [DOI] [PubMed] [Google Scholar]
  199. Messenguy F. Concerted repression of the synthesis of the arginine biosynthetic enzymes by aminoacids: a comparison between the regulatory mechanisms controlling aminoacid biosyntheses in bacteria and in yeast. Mol Gen Genet. 1979 Jan 16;169(1):85–95. doi: 10.1007/BF00267549. [DOI] [PubMed] [Google Scholar]
  200. Messenguy F., Wiame J. -M. The control of ornithinetranscarbamylase activity by arginase in Saccharomyces cerevisiae. FEBS Lett. 1969 Apr;3(1):47–49. doi: 10.1016/0014-5793(69)80093-1. [DOI] [PubMed] [Google Scholar]
  201. Metzer E., Levitz R., Halpern Y. S. Isolation and properties of Escherichia coli K-12 mutants impaired in the utilization of gamma-aminobutyrate. J Bacteriol. 1979 Mar;137(3):1111–1118. doi: 10.1128/jb.137.3.1111-1118.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  202. Michael R., Tchen T. T. Constitutive degradation of putrescine in a Pseudomonas species and its possible physiological significance. Biochem Biophys Res Commun. 1971 Feb 5;42(3):545–549. doi: 10.1016/0006-291x(71)90405-0. [DOI] [PubMed] [Google Scholar]
  203. Michaels R., Kim K. H. Comparative studies of putrescine degradation by microorganisms. Biochim Biophys Acta. 1966 Jan 25;115(1):59–64. doi: 10.1016/0304-4165(66)90048-1. [DOI] [PubMed] [Google Scholar]
  204. Miller D. L., Rodwell V. W. Metabolism of basic amino acids in Pseudomonas putida. Intermediates in L-arginine catabolism. J Biol Chem. 1971 Aug 25;246(16):5053–5058. [PubMed] [Google Scholar]
  205. Mitruka B. M., Costilow R. N. Arginine and ornithine catabolism by Clostridium botulinum. J Bacteriol. 1967 Jan;93(1):295–301. doi: 10.1128/jb.93.1.295-301.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  206. Moore S. K., Garvin R. T., James E. Nucleotide sequence of the argF regulatory region of Escherichia coli K-12. Gene. 1981 Dec;16(1-3):119–132. doi: 10.1016/0378-1119(81)90068-8. [DOI] [PubMed] [Google Scholar]
  207. Morgan S. D., Söll D. Regulation of the biosynthesis of aminoacid: tRNA ligases and of tRNA. Prog Nucleic Acid Res Mol Biol. 1978;21:181–207. doi: 10.1016/s0079-6603(08)60270-6. [DOI] [PubMed] [Google Scholar]
  208. Morris D. R., Jorstad C. M. Isolation of conditionally putrescine-deficient mutants of Escherichia coli. J Bacteriol. 1970 Mar;101(3):731–737. doi: 10.1128/jb.101.3.731-737.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  209. Mortlock R. P. Metabolic acquisitions through laboratory selection. Annu Rev Microbiol. 1982;36:259–284. doi: 10.1146/annurev.mi.36.100182.001355. [DOI] [PubMed] [Google Scholar]
  210. Mountain A., Baumberg S. Map locations of some mutations conferring resistance to arginine hydroxamate in Bacillus subtilis 168. Mol Gen Genet. 1980;178(3):691–701. doi: 10.1007/BF00337880. [DOI] [PubMed] [Google Scholar]
  211. Mountain A., Mann N. H., Munton R. N., Baumberg S. Cloning of a Bacillus subtilis restriction fragment complementing auxotrophic mutants of eight Escherichia coli genes of arginine biosynthesis. Mol Gen Genet. 1984;197(1):82–89. doi: 10.1007/BF00327926. [DOI] [PubMed] [Google Scholar]
  212. Mountain A., McChesney J., Smith M. C., Baumberg S. Gene sequence encoding early enzymes of arginine synthesis within a cluster in Bacillus subtilis, as revealed by cloning in Escherichia coli. J Bacteriol. 1986 Mar;165(3):1026–1028. doi: 10.1128/jb.165.3.1026-1028.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  213. Muth W. L., Costilow R. N. Ornithine cyclase (deaminating). III. Mechanism of the conversion of ornithine to proline. J Biol Chem. 1974 Dec 10;249(23):7463–7467. [PubMed] [Google Scholar]
  214. MØLLER V. Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol Microbiol Scand. 1955;36(2):158–172. doi: 10.1111/j.1699-0463.1955.tb04583.x. [DOI] [PubMed] [Google Scholar]
  215. NAKAMURA K. Separation and properties of DPN and TPN-linked succinic semialdehyde dehydrogenases from Pseudomonas aeruginosa. Biochim Biophys Acta. 1960 Dec 18;45:554–560. doi: 10.1016/0006-3002(60)91493-1. [DOI] [PubMed] [Google Scholar]
  216. NGUYEN-VAN-THOAI, OLOMUCKI A. [Arginine decarboxyoxidase. I. Characteristics and nature of the enzyme]. Biochim Biophys Acta. 1962 Jun 4;59:533–544. doi: 10.1016/0006-3002(62)90631-5. [DOI] [PubMed] [Google Scholar]
  217. NIRENBERG M. W., JAKOBY W. B. Enzymatic utilization of gamma-hydroxybutyric acid. J Biol Chem. 1960 Apr;235:954–960. [PubMed] [Google Scholar]
  218. NOE F. F., NICKERSON W. J. Metabolism of 2-pyrrolidone and gamma-aminobutyric acid by Pseudomonas aeruginosa. J Bacteriol. 1958 Jun;75(6):674–681. doi: 10.1128/jb.75.6.674-681.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  219. Nagano H., Zalkin H., Henderson E. J. The anthranilate synthetase-anthranilate-5-phosphorribosylpyrophosphate phosphoribosyltransferase aggregate. On the reaction mechanism of anthranilate synthetase from Salmonella typhimurium. J Biol Chem. 1970 Aug 10;245(15):3810–3820. [PubMed] [Google Scholar]
  220. Nakamura Y., Uchida H. Isolation of conditionally lethal amber mutations affecting synthesis of the nusA protein of Escherichia coli. Mol Gen Genet. 1983;190(2):196–203. doi: 10.1007/BF00330640. [DOI] [PubMed] [Google Scholar]
  221. Neidhardt F. C., Bloch P. L., Pedersen S., Reeh S. Chemical measurement of steady-state levels of ten aminoacyl-transfer ribonucleic acid synthetases in Escherichia coli. J Bacteriol. 1977 Jan;129(1):378–387. doi: 10.1128/jb.129.1.378-387.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  222. Neihardt F. C., Parker J., McKeever W. G. Function and regulation of aminoacyl-tRNA synthetases in prokaryotic and eukaryotic cells. Annu Rev Microbiol. 1975;29:215–250. doi: 10.1146/annurev.mi.29.100175.001243. [DOI] [PubMed] [Google Scholar]
  223. Neway J. O., Switzer R. L. Degradation of ornithine transcarbamylase in sporulating Bacillus subtilis cells. J Bacteriol. 1983 Aug;155(2):522–530. doi: 10.1128/jb.155.2.522-530.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  224. Neway J. O., Switzer R. L. Purification, characterization, and physiological function of Bacillus subtilis ornithine transcarbamylase. J Bacteriol. 1983 Aug;155(2):512–521. doi: 10.1128/jb.155.2.512-521.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  225. Nguyen Van Thoai, Thome-Beau F., Olomucki A. Induction et spécificité des enzymes de la nouvelle voie catabolique de l'arginine. Biochim Biophys Acta. 1966 Jan 25;115(1):73–80. [PubMed] [Google Scholar]
  226. Nichols B. P., Miozzari G. F., van Cleemput M., Bennett G. N., Yanofsky C. Nucleotide sequences of the trpG regions of Escherichia coli, Shigella dysenteriae, Salmonella typhimurium and Serratia marcescens. J Mol Biol. 1980 Oct 5;142(4):503–517. doi: 10.1016/0022-2836(80)90260-0. [DOI] [PubMed] [Google Scholar]
  227. Nyunoya H., Broglie K. E., Lusty C. J. The gene coding for carbamoyl-phosphate synthetase I was formed by fusion of an ancestral glutaminase gene and a synthetase gene. Proc Natl Acad Sci U S A. 1985 Apr;82(8):2244–2246. doi: 10.1073/pnas.82.8.2244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  228. Nyunoya H., Broglie K. E., Widgren E. E., Lusty C. J. Characterization and derivation of the gene coding for mitochondrial carbamyl phosphate synthetase I of rat. J Biol Chem. 1985 Aug 5;260(16):9346–9356. [PubMed] [Google Scholar]
  229. Nyunoya H., Lusty C. J. Sequence of the small subunit of yeast carbamyl phosphate synthetase and identification of its catalytic domain. J Biol Chem. 1984 Aug 10;259(15):9790–9798. [PubMed] [Google Scholar]
  230. Nyunoya H., Lusty C. J. The carB gene of Escherichia coli: a duplicated gene coding for the large subunit of carbamoyl-phosphate synthetase. Proc Natl Acad Sci U S A. 1983 Aug;80(15):4629–4633. doi: 10.1073/pnas.80.15.4629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  231. O'Farrell P. H. The suppression of defective translation by ppGpp and its role in the stringent response. Cell. 1978 Jul;14(3):545–557. doi: 10.1016/0092-8674(78)90241-6. [DOI] [PubMed] [Google Scholar]
  232. Ottow J. C. Arginine dihydrolase activity in species of the genus Bacillus revealed by thin-layer chromatography. J Gen Microbiol. 1974 Sep;84(1):209–213. doi: 10.1099/00221287-84-1-209. [DOI] [PubMed] [Google Scholar]
  233. Padmanabhan R., Tchen T. T. Aminoaldehyde dehydrogenases from a Pseudomonas species grown on polyamines. Arch Biochem Biophys. 1972 Jun;150(2):531–541. doi: 10.1016/0003-9861(72)90071-9. [DOI] [PubMed] [Google Scholar]
  234. Padmanabhan R., Tchen T. T. Nicotinamide adenine dinucleotide and nicotinamide adenine dinucleotide phosphate-linked succinic semialdehyde dehydrogenases in a Pseudonomas species. J Bacteriol. 1969 Oct;100(1):398–402. doi: 10.1128/jb.100.1.398-402.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  235. Paluh J. L., Zalkin H., Betsch D., Weith H. L. Study of anthranilate synthase function by replacement of cysteine 84 using site-directed mutagenesis. J Biol Chem. 1985 Feb 10;260(3):1889–1894. [PubMed] [Google Scholar]
  236. Panchal C. J., Bagchee S. N., Guha A. Divergent orientation of transcription from the arginine gene ECBH cluster of Escherichia coli. J Bacteriol. 1974 Feb;117(2):675–680. doi: 10.1128/jb.117.2.675-680.1974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  237. Pandey V. N. Interdependence of glucose and arginine catabolism in Streptococcus faecalis R. ATCC 8043. Biochem Biophys Res Commun. 1980 Oct 31;96(4):1480–1487. doi: 10.1016/0006-291x(80)91341-8. [DOI] [PubMed] [Google Scholar]
  238. Paulin L., Vehmaanperä J., Nykänen I., Pösö H. GTP-insensitive ornithine decarboxylase in acetobacteria able to synthesize spermine. Biochem Biophys Res Commun. 1983 Jul 29;114(2):779–784. doi: 10.1016/0006-291x(83)90849-5. [DOI] [PubMed] [Google Scholar]
  239. Paulus H. The evolutionary history of the ornithine cycle as a determinant of its structure and regulation. Curr Top Cell Regul. 1983;22:177–200. doi: 10.1016/b978-0-12-152822-5.50010-5. [DOI] [PubMed] [Google Scholar]
  240. Paulus T. J., Switzer R. L. Characterization of pyrimidine-repressible and arginine-repressible carbamyl phosphate synthetases from Bacillus subtilis. J Bacteriol. 1979 Jan;137(1):82–91. doi: 10.1128/jb.137.1.82-91.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  241. Paulus T. J., Switzer R. L. Synthesis and inactivation of carbamyl phosphate synthetase isozymes of Bacillus subtilis during growth and sporulation. J Bacteriol. 1979 Dec;140(3):769–773. doi: 10.1128/jb.140.3.769-773.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  242. Penninckx M., Gigot D. Synthesis and interaction with Escherichia coli L-ornithine carbamolytransferase of two potential transition-state analogues. FEBS Lett. 1978 Apr 1;88(1):94–96. doi: 10.1016/0014-5793(78)80615-2. [DOI] [PubMed] [Google Scholar]
  243. Penninckx M., Gigot D. Synthesis of a peptide form of N-delta-(phosphonoacetyl)-L-ornithine. Its antibacterial effect through the specific inhibition of Escherichia coli L-ornithine carbamoyltransferase. J Biol Chem. 1979 Jul 25;254(14):6392–6396. [PubMed] [Google Scholar]
  244. Penninckx M., Simon J. P., Wiame J. M. Interaction between arginase and L-ornithine carbamoyltransferase in Saccharomyces cerevisiae. Purification of S. cerevisiae enzymes and evidence that these enzymes as well as rat-liver arginase are trimers. Eur J Biochem. 1974 Nov 15;49(2):429–442. doi: 10.1111/j.1432-1033.1974.tb03848.x. [DOI] [PubMed] [Google Scholar]
  245. Piette J., Cunin R., Boyen A., Charlier D., Crabeel M., Van Vliet F., Glansdorff N., Squires C., Squires C. L. The regulatory region of the divergent argECBH operon in Escherichia coli K-12. Nucleic Acids Res. 1982 Dec 20;10(24):8031–8048. doi: 10.1093/nar/10.24.8031. [DOI] [PMC free article] [PubMed] [Google Scholar]
  246. Piette J., Cunin R., Van Vliet F., Charlier D., Crabeel M., Ota Y., Glansdorff N. Homologous control sites and DNA transcription starts in the related argF and argI genes of Escherichia coli K12. EMBO J. 1982;1(7):853–857. doi: 10.1002/j.1460-2075.1982.tb01259.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  247. Piette J., Nyunoya H., Lusty C. J., Cunin R., Weyens G., Crabeel M., Charlier D., Glansdorff N., Piérard A. DNA sequence of the carA gene and the control region of carAB: tandem promoters, respectively controlled by arginine and the pyrimidines, regulate the synthesis of carbamoyl-phosphate synthetase in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1984 Jul;81(13):4134–4138. doi: 10.1073/pnas.81.13.4134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  248. Piggot P. J., Hoch J. A. Revised genetic linkage map of Bacillus subtilis. Microbiol Rev. 1985 Jun;49(2):158–179. doi: 10.1128/mr.49.2.158-179.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  249. Pinkus L. M., Meister A. Identification of a reactive cysteine residue at the glutamine binding site of carbamyl phosphate synthetase. J Biol Chem. 1972 Oct 10;247(19):6119–6127. [PubMed] [Google Scholar]
  250. Pistorius E. K., Voss H. Presence of an amino acid oxidase in photosystem II of Anacystis nidulans. Eur J Biochem. 1982 Aug;126(1):203–209. doi: 10.1111/j.1432-1033.1982.tb06767.x. [DOI] [PubMed] [Google Scholar]
  251. Pistorius E. K., Voss H. Some properties of a basic L-amino-acid oxidase from Anacystis nidulans. Biochim Biophys Acta. 1980 Feb 14;611(2):227–240. doi: 10.1016/0005-2744(80)90059-5. [DOI] [PubMed] [Google Scholar]
  252. Piérard A. Control of the activity of Escherichia coli carbamoyl phosphate synthetase by antagonistic allosteric effectors. Science. 1966 Dec 23;154(3756):1572–1573. doi: 10.1126/science.154.3756.1572. [DOI] [PubMed] [Google Scholar]
  253. Piérard A., Glansdorff N., Mergeay M., Wiame J. M. Control of the biosynthesis of carbamoyl phosphate in Escherichia coli. J Mol Biol. 1965 Nov;14(1):23–36. doi: 10.1016/s0022-2836(65)80226-1. [DOI] [PubMed] [Google Scholar]
  254. Piérard A., Lissens W., Halleux P., Cunin R., Glansdorff N. Role of transcriptional regulation and enzyme inactivation in the synthesis of Escherichia coli carbamoylphosphate synthase. J Bacteriol. 1980 Jan;141(1):382–385. doi: 10.1128/jb.141.1.382-385.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  255. Piérard A., Wiame J. M. Regulation and mutation affecting a glutamine dependent formation of carbamyl phosphate in Escherichia coli. Biochem Biophys Res Commun. 1964 Feb 18;15(1):76–81. doi: 10.1016/0006-291x(64)90106-8. [DOI] [PubMed] [Google Scholar]
  256. Potvin B., Gooder H. Carbamyl phosphate synthesis in Bacillus subtilis. Biochem Genet. 1975 Feb;13(1-2):125–143. doi: 10.1007/BF00486011. [DOI] [PubMed] [Google Scholar]
  257. Pouwels P. H., Cunin R., Glansdorff N. Letter: Divergent transcription in the argECBH cluster of genes in Escherichia coli K12. J Mol Biol. 1974 Mar;83(3):421–424. doi: 10.1016/0022-2836(74)90288-5. [DOI] [PubMed] [Google Scholar]
  258. Powers S. G., Meister A. Mechanism of the reaction catalyzed by carbamyl phosphate synthetase. Binding of ATP to the two functionally different ATP sites. J Biol Chem. 1978 Feb 10;253(3):800–803. [PubMed] [Google Scholar]
  259. Prozesky O. W. Arginine synthesis in Proteus mirabilis. J Gen Microbiol. 1967 Nov;49(2):325–334. doi: 10.1099/00221287-49-2-325. [DOI] [PubMed] [Google Scholar]
  260. Prozesky O. W., Coetzee J. N. Linked transduction in Proteus mirabilis. Nature. 1966 Mar 19;209(5029):1262–1262. doi: 10.1038/2091262a0. [DOI] [PubMed] [Google Scholar]
  261. Prozesky O. W., Grabow W. O., van der Merwe S., Coetzee J. N. Arginine gene clusters in the Proteus-Providence group. J Gen Microbiol. 1973 Jul;77(1):237–240. doi: 10.1099/00221287-77-1-237. [DOI] [PubMed] [Google Scholar]
  262. Prozesky O. W. Regulation of the arginine pathway in Proteus mirabilis. J Gen Microbiol. 1969 Jan;55(1):89–102. doi: 10.1099/00221287-55-1-89. [DOI] [PubMed] [Google Scholar]
  263. RAZIN S., GERY I., BACHRACH U. The degradation of natural polyamines and diamines by bacteria. Biochem J. 1959 Mar;71(3):551–558. doi: 10.1042/bj0710551. [DOI] [PMC free article] [PubMed] [Google Scholar]
  264. Rahman M., Laverack P. D., Clarke P. H. The catabolism of arginine by Pseudomonas aeruginosa. J Gen Microbiol. 1980 Feb;116(2):371–380. doi: 10.1099/00221287-116-2-371. [DOI] [PubMed] [Google Scholar]
  265. Ramos F., Stalon V., Piérard A., Wiame J. M. The specialization of the two ornithine carbamoyltransferases of Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):98–106. doi: 10.1016/0005-2744(67)90116-7. [DOI] [PubMed] [Google Scholar]
  266. Ratner S. Enzymes of arginine and urea synthesis. Adv Enzymol Relat Areas Mol Biol. 1973;39:1–90. doi: 10.1002/9780470122846.ch1. [DOI] [PubMed] [Google Scholar]
  267. Reddy P., Peterkofsky A., McKenney K. Translational efficiency of the Escherichia coli adenylate cyclase gene: mutating the UUG initiation codon to GUG or AUG results in increased gene expression. Proc Natl Acad Sci U S A. 1985 Sep;82(17):5656–5660. doi: 10.1073/pnas.82.17.5656. [DOI] [PMC free article] [PubMed] [Google Scholar]
  268. Reed D. E., Lukens L. N. Observations on the conversion of N-acetylglutamate to proline in extracts of Escherichia coli. J Biol Chem. 1966 Jan 25;241(2):264–270. [PubMed] [Google Scholar]
  269. Reznikoff W. S., Miller J. H., Scaife J. G., Beckwith J. R. A mechanism for repressor action. J Mol Biol. 1969 Jul 14;43(1):201–213. doi: 10.1016/0022-2836(69)90089-8. [DOI] [PubMed] [Google Scholar]
  270. Rogers P., Kaden T. M., Toth M. Repression of Arg mRNA synthesis by L-arginine in cell-free extracts of Escherichia coli. Biochem Biophys Res Commun. 1975 Aug 18;65(4):1284–1291. doi: 10.1016/s0006-291x(75)80369-x. [DOI] [PubMed] [Google Scholar]
  271. Rosemblatt M. S., Callewaert D. M., Tchen T. T. In vivo subunit hybridization of succinic semialdehyde and 4-aminobutanal dehydrogenases from a Pseudomonas species. Biochemistry. 1974 Sep 24;13(20):4176–4180. doi: 10.1021/bi00717a017. [DOI] [PubMed] [Google Scholar]
  272. Rosemblatt M. S., Callewaert D. M., Tchen T. T. Succinic semialdehyde dehydrogenase from a Pseudomonas species. II. Physical and immunochemical properties of the enzyme. J Biol Chem. 1973 Sep 10;248(17):6014–6018. [PubMed] [Google Scholar]
  273. Rosenfeld H. J., Roberts J. Arginine decarboxylase from a Pseudomonas species. J Bacteriol. 1976 Feb;125(2):601–607. doi: 10.1128/jb.125.2.601-607.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  274. SCHIMKE R. T., BARILE M. F. ARGININE METABOLISM IN PLEUROPNEUMONIA-LIKE ORGANISMS ISOLATED FROM MAMMALIAN CELL CULTURE. J Bacteriol. 1963 Aug;86:195–206. doi: 10.1128/jb.86.2.195-206.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  275. SCHMIDT G. C., LOGAN M. A., TYTELL A. A. The degradation of arginine by Clostridium perfringens (BP6K). J Biol Chem. 1952 Oct;198(2):771–783. [PubMed] [Google Scholar]
  276. SMITH P. F. Conversion of citrulline to ornithine by pleuropneumonialike organisms. J Bacteriol. 1957 Dec;74(6):801–806. doi: 10.1128/jb.74.6.801-806.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  277. STADTMAN T. C., ELLIOTT P. Studies on the enzymic reduction of amino acids. II. Purification and properties of D-proline reductase and a proline racemase from Clostridium sticklandii. J Biol Chem. 1957 Oct;228(2):983–997. [PubMed] [Google Scholar]
  278. STADTMAN T. C. On the metabolism of an amino acid fermenting Clostridium. J Bacteriol. 1954 Mar;67(3):314–320. doi: 10.1128/jb.67.3.314-320.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  279. STADTMAN T. C., WHITE F. H., Jr Tracer studies on ornithine, lysine, and formate metabolism in an amino acid fermenting Clostridium. J Bacteriol. 1954 Jun;67(6):651–657. doi: 10.1128/jb.67.6.651-657.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  280. Saedler H., Reif H. J., Hu S., Davidson N. IS2, a genetic element for turn-off and turn-on of gene activity in E. coli. Mol Gen Genet. 1974;132(4):265–289. doi: 10.1007/BF00268569. [DOI] [PubMed] [Google Scholar]
  281. Saint-Girons I., Duchange N., Zakin M. M., Park I., Margarita D., Ferrara P., Cohen G. N. Nucleotide sequence of metF, the E. coli structural gene for 5-10 methylene tetrahydrofolate reductase and of its control region. Nucleic Acids Res. 1983 Oct 11;11(19):6723–6732. doi: 10.1093/nar/11.19.6723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  282. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, Edition VI. Microbiol Rev. 1983 Sep;47(3):410–453. doi: 10.1128/mr.47.3.410-453.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  283. Satishchandran C., Boyle S. M. Antagonistic transcriptional regulation of the putrescine biosynthetic enzyme agmatine ureohydrolase by cyclic AMP and agmatine in Escherichia coli. J Bacteriol. 1984 Feb;157(2):552–559. doi: 10.1128/jb.157.2.552-559.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  284. Schardl C. L., Kado C. I. Ti plasmid and chromosomal ornithine catabolism genes of Agrobacterium tumefaciens C58. J Bacteriol. 1983 Jul;155(1):196–202. doi: 10.1128/jb.155.1.196-202.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  285. Scherer G. F., Walkinshaw M. D., Arnott S., Morré D. J. The ribosome binding sites recognized by E. coli ribosomes have regions with signal character in both the leader and protein coding segments. Nucleic Acids Res. 1980 Sep 11;8(17):3895–3907. doi: 10.1093/nar/8.17.3895. [DOI] [PMC free article] [PubMed] [Google Scholar]
  286. Scherer P., Kneifel H. Distribution of polyamines in methanogenic bacteria. J Bacteriol. 1983 Jun;154(3):1315–1322. doi: 10.1128/jb.154.3.1315-1322.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  287. Schimke R. T., Berlin C. M., Sweeney E. W., Carroll W. R. The generation of energy by the arginine dihydrolase pathway in Mycoplasma hominis 07. J Biol Chem. 1966 May 25;241(10):2228–2236. [PubMed] [Google Scholar]
  288. Schreier H. J., Smith T. M., Bernlohr R. W. Regulation of nitrogen catabolic enzymes in Bacillus spp. J Bacteriol. 1982 Aug;151(2):971–975. doi: 10.1128/jb.151.2.971-975.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  289. Sens D., Natter W., Garvin R. T., James E. Transcription of the argF and argI genes of the arginine biosynthetic regulon of Escherichia coli K12, performed in vitro. Mol Gen Genet. 1977 Sep 21;155(1):7–18. doi: 10.1007/BF00268555. [DOI] [PubMed] [Google Scholar]
  290. Sens D., Natter W., James E. In vitro transcription of the Escherichia coli K-12 argA, argE, and argCBH operons. J Bacteriol. 1977 May;130(2):642–655. doi: 10.1128/jb.130.2.642-655.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  291. Seto B., Stadtman T. C. Purification and properties of proline reductase from Clostridium sticklandii. J Biol Chem. 1976 Apr 25;251(8):2435–2439. [PubMed] [Google Scholar]
  292. Shaibe E., Metzer E., Halpern Y. S. Control of utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):938–942. doi: 10.1128/jb.163.3.938-942.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  293. Shaibe E., Metzer E., Halpern Y. S. Metabolic pathway for the utilization of L-arginine, L-ornithine, agmatine, and putrescine as nitrogen sources in Escherichia coli K-12. J Bacteriol. 1985 Sep;163(3):933–937. doi: 10.1128/jb.163.3.933-937.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  294. Shinners E. N., Catlin B. W. Arginine and pyrimidine biosynthetic defects in Neisseria gonorrhoeae strains isolated from patients. J Bacteriol. 1982 Jul;151(1):295–302. doi: 10.1128/jb.151.1.295-302.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  295. Simon J. P., Stalon V. Enzymes of agmatine degradation and the control of their synthesis in Streptococcus faecalis. J Bacteriol. 1982 Nov;152(2):676–681. doi: 10.1128/jb.152.2.676-681.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  296. Simon J. P., Wargnies B., Stalon V. Control of enzyme synthesis in the arginine deiminase pathway of Streptococcus faecalis. J Bacteriol. 1982 Jun;150(3):1085–1090. doi: 10.1128/jb.150.3.1085-1090.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  297. Snellings K., Vermeulen C. W. Non-random layout of the amino acid loci on the genome of Escherichia coli. J Mol Biol. 1982 Jun 5;157(4):687–688. doi: 10.1016/0022-2836(82)90507-1. [DOI] [PubMed] [Google Scholar]
  298. Somack R., Costilow R. N. 2,4-diaminopentanoic acid C 4 dehydrogenase. Purification and properties of the protein. J Biol Chem. 1973 Jan 25;248(2):385–388. [PubMed] [Google Scholar]
  299. Somack R., Costilow R. N. Purification and properties of a pyridoxal phosphate and coenzyme B 12 dependent D- -ornithine 5,4-aminomutase. Biochemistry. 1973 Jul 3;12(14):2597–2604. doi: 10.1021/bi00738a008. [DOI] [PubMed] [Google Scholar]
  300. Stalon V., Legrain C., Wiame J. M. Anabolic ornithine carbamolytransferase of Pseudomonas. The bases of its functional specialization. Eur J Biochem. 1977 Apr 1;74(2):319–327. doi: 10.1111/j.1432-1033.1977.tb11396.x. [DOI] [PubMed] [Google Scholar]
  301. Stalon V., Mercenier A. L-arginine utilization by Pseudomonas species. J Gen Microbiol. 1984 Jan;130(1):69–76. doi: 10.1099/00221287-130-1-69. [DOI] [PubMed] [Google Scholar]
  302. Stalon V., Ramos F., Piérard A., Wiame J. M. Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A comparison with the anabolic transferase and with a mutationally modified catabolic transferase. Eur J Biochem. 1972 Aug 18;29(1):25–35. doi: 10.1111/j.1432-1033.1972.tb01953.x. [DOI] [PubMed] [Google Scholar]
  303. Stalon V., Ramos F., Piérard A., Wiame J. M. The occurrence of a catabolic and an anabolic ornithine carbamoyltransferase in Pseudomonas. Biochim Biophys Acta. 1967 May 16;139(1):91–97. doi: 10.1016/0005-2744(67)90115-5. [DOI] [PubMed] [Google Scholar]
  304. Stalon V. Regulation of the catabolic ornithine carbamoyltransferase of Pseudomonas fluorescens. A study of the allosteric interactions. Eur J Biochem. 1972 Aug 18;29(1):36–46. doi: 10.1111/j.1432-1033.1972.tb01954.x. [DOI] [PubMed] [Google Scholar]
  305. Stalon V., Simon J. P., Mercenier A. Enzymes of arginine utilization and their formation in Aeromonas formicans NCIB 9232. Arch Microbiol. 1982 Dec 3;133(4):295–299. doi: 10.1007/BF00521293. [DOI] [PubMed] [Google Scholar]
  306. Stragier P., Danos O., Patte J. C. Regulation of diaminopimelate decarboxylase synthesis in Escherichia coli. II. Nucleotide sequence of the lysA gene and its regulatory region. J Mol Biol. 1983 Aug 5;168(2):321–331. doi: 10.1016/s0022-2836(83)80021-7. [DOI] [PubMed] [Google Scholar]
  307. THORNE K. J., JONES M. E. CARBAMYL AND ACETYL PHOSPHOKINASE ACTIVITIES OF STREPTOCOCCUS FAECALIS AND ESCHERICHIA COLI. J Biol Chem. 1963 Sep;238:2992–2998. [PubMed] [Google Scholar]
  308. Tabor C. W., Tabor H. Polyamines in microorganisms. Microbiol Rev. 1985 Mar;49(1):81–99. doi: 10.1128/mr.49.1.81-99.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  309. Tabor C. W., Tabor H. Polyamines. Annu Rev Biochem. 1984;53:749–790. doi: 10.1146/annurev.bi.53.070184.003533. [DOI] [PubMed] [Google Scholar]
  310. Tesh M. J., Miller R. D. Arginine biosynthesis in Legionella pneumophila: absence of N-acetylglutamate synthetase. Can J Microbiol. 1983 Sep;29(9):1230–1233. doi: 10.1139/m83-190. [DOI] [PubMed] [Google Scholar]
  311. Trotta P. P., Burt M. E., Haschemeyer R. H., Meister A. Reversible dissociation of carbamyl phosphate synthetase into a regulated synthesis subunit and a subunit required for glutamine utilization. Proc Natl Acad Sci U S A. 1971 Oct;68(10):2599–2603. doi: 10.1073/pnas.68.10.2599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  312. Trotta P. P., Pinkus L. M., Haschemeyer R. H., Meister A. Reversible dissociation of the monomer of glutamine-dependent carbamyl phosphate synthetase into catalytically active heavy and light subunits. J Biol Chem. 1974 Jan 25;249(2):492–499. [PubMed] [Google Scholar]
  313. Trudel M., Springer M., Graffe M., Fayat G., Blanquet S., Grunberg-Manago M. Regulation of E.coli phenylalanyl-tRNA synthetase operon in vivo. Biochim Biophys Acta. 1984 May 15;782(1):10–17. doi: 10.1016/0167-4781(84)90100-3. [DOI] [PubMed] [Google Scholar]
  314. Tsuda Y., Friedmann H. C. Ornithine metabolism by Clostridium sticklandii. Oxidation of ornithine to 2-amino-4-ketopentanoic acid via 2,4-diaminopentanoic acid; participation of B12 coenzyme, pyridoxal phosphate, and pyridine nucleotide. J Biol Chem. 1970 Nov 25;245(22):5914–5926. [PubMed] [Google Scholar]
  315. Turnbough C. L., Jr Regulation of Escherichia coli aspartate transcarbamylase synthesis by guanosine tetraphosphate and pyrimidine ribonucleoside triphosphates. J Bacteriol. 1983 Feb;153(2):998–1007. doi: 10.1128/jb.153.2.998-1007.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  316. Udaka S. Isolation of the arginine repressor in Escherichia coli. Nature. 1970 Oct 24;228(5269):336–338. doi: 10.1038/228336a0. [DOI] [PubMed] [Google Scholar]
  317. Udaka S. Pathway-specific pattern of control of arginine biosynthesis in bacteria. J Bacteriol. 1966 Feb;91(2):617–621. doi: 10.1128/jb.91.2.617-621.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  318. Urm E., Yang H., Zubay G., Kelker N., Maas W. In vitro repression of n- -acetyl-L-ornithinase synthesis in Escherichia coli. Mol Gen Genet. 1973;121(1):1–7. doi: 10.1007/BF00353688. [DOI] [PubMed] [Google Scholar]
  319. VOGEL H. J., BONNER D. M. Acetylornithinase of Escherichia coli: partial purification and some properties. J Biol Chem. 1956 Jan;218(1):97–106. [PubMed] [Google Scholar]
  320. VYAS S., MAAS W. K. Feedback inhibition of acetylglutamate synthetase by arginine in Escherichia coli. Arch Biochem Biophys. 1963 Mar;100:542–546. doi: 10.1016/0003-9861(63)90124-3. [DOI] [PubMed] [Google Scholar]
  321. Van Vliet F., Cunin R., Jacobs A., Piette J., Gigot D., Lauwereys M., Piérard A., Glansdorff N. Evolutionary divergence of genes for ornithine and aspartate carbamoyl-transferases--complete sequence and mode of regulation of the Escherichia coli argF gene; comparison of argF with argI and pyrB. Nucleic Acids Res. 1984 Aug 10;12(15):6277–6289. doi: 10.1093/nar/12.15.6277. [DOI] [PMC free article] [PubMed] [Google Scholar]
  322. Vander Wauven C., Piérard A., Kley-Raymann M., Haas D. Pseudomonas aeruginosa mutants affected in anaerobic growth on arginine: evidence for a four-gene cluster encoding the arginine deiminase pathway. J Bacteriol. 1984 Dec;160(3):928–934. doi: 10.1128/jb.160.3.928-934.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  323. Vander Wauven C., Stalon V. Occurrence of succinyl derivatives in the catabolism of arginine in Pseudomonas cepacia. J Bacteriol. 1985 Nov;164(2):882–886. doi: 10.1128/jb.164.2.882-886.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  324. Vanderbilt A. S., Gaby N. S., Rodwell V. W. Intermediates and enzymes between alpha-ketoarginine and gamma-guanidinobutyrate in the L-arginine catabolic pathway of Pseudomonas putida. J Biol Chem. 1975 Jul 25;250(14):5322–5329. [PubMed] [Google Scholar]
  325. Vargha G., Karsai T., Szabó G. A conditional aerial mycelium-negative mutant of Streptomyces fradiae with deficient ornithine carbamoyltransferase activity. J Gen Microbiol. 1983 Feb;129(2):539–541. doi: 10.1099/00221287-129-2-539. [DOI] [PubMed] [Google Scholar]
  326. Venugopal V., Harikumar P., Doke S. N., Kumta U. S. Regulatory responses of arginine deiminase in whole cells of Clostridium sporogenes. Biochim Biophys Acta. 1975 Oct 22;403(2):521–529. doi: 10.1016/0005-2744(75)90080-7. [DOI] [PubMed] [Google Scholar]
  327. Venugopal V., Nadkarni G. B. Regulation of the arginine dihydrolase pathway in Clostridium sporogenes. J Bacteriol. 1977 Aug;131(2):693–695. doi: 10.1128/jb.131.2.693-695.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  328. Voellmy R., Leisinger T. Dual role for N-2-acetylornithine 5-aminotransferase from Pseudomonas aeruginosa in arginine biosynthesis and arginine catabolism. J Bacteriol. 1975 Jun;122(3):799–809. doi: 10.1128/jb.122.3.799-809.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  329. Voellmy R., Leisinger T. Regulation of enzyme synthesis in the arginine biosynthetic pathway of Pseudomonas aeruginosa. J Gen Microbiol. 1978 Nov;109(1):25–35. doi: 10.1099/00221287-109-1-25. [DOI] [PubMed] [Google Scholar]
  330. Voellym R., Leisinger T. Role of 4-aminobutyrate aminotransferase in the arginine metabolism of Pseudomonas aeruginosa. J Bacteriol. 1976 Dec;128(3):722–729. doi: 10.1128/jb.128.3.722-729.1976. [DOI] [PMC free article] [PubMed] [Google Scholar]
  331. Vogel H. J., Vogel R. H. Enzymes of arginine biosynthesis and their repressive control. Adv Enzymol Relat Areas Mol Biol. 1974;40(0):65–90. doi: 10.1002/9780470122853.ch3. [DOI] [PubMed] [Google Scholar]
  332. Wargnies B., Lauwers N., Stalon V. Structure and properties of the putrescine carbamoyltransferase of Streptococcus faecalis. Eur J Biochem. 1979 Nov 1;101(1):143–152. doi: 10.1111/j.1432-1033.1979.tb04226.x. [DOI] [PubMed] [Google Scholar]
  333. Wargnies B., Legrain C., Stalon V. Anabolic ornithine carbamoyltransferase of Escherichia coli and catabolic ornithine carbamoyltransferase of Pseudomonas putida. Steady-state kinetic analysis. Eur J Biochem. 1978 Aug 15;89(1):203–212. doi: 10.1111/j.1432-1033.1978.tb20914.x. [DOI] [PubMed] [Google Scholar]
  334. Weathers P. J., Chee H. L., Allen M. M. Arginine catabolism in Aphanocapsa 6308. Arch Microbiol. 1978 Jul;118(1):1–6. doi: 10.1007/BF00406066. [DOI] [PubMed] [Google Scholar]
  335. Werner M., Feller A., Piérard A. Nucleotide sequence of yeast gene CP A1 encoding the small subunit of arginine-pathway carbamoyl-phosphate synthetase. Homology of the deduced amino acid sequence to other glutamine amidotransferases. Eur J Biochem. 1985 Jan 15;146(2):371–381. doi: 10.1111/j.1432-1033.1985.tb08663.x. [DOI] [PubMed] [Google Scholar]
  336. Yonaha K., Toyama S. gamma-Aminobutyrate:alpha-ketoglutarate aminotransferase from Pseudomonas sp. F-126: purification, crystallization, and enzymologic properties. Arch Biochem Biophys. 1980 Mar;200(1):156–164. doi: 10.1016/0003-9861(80)90342-2. [DOI] [PubMed] [Google Scholar]
  337. Yorifuji T., Ogata K. Arginine racemase of Pseudomonas graveolens. I. Purification, crystallization, and properties. J Biol Chem. 1971 Aug 25;246(16):5085–5092. [PubMed] [Google Scholar]
  338. York M. K., Stodolsky M. Characterization of P1argF derivatives from Escherichia coli K12 transduction. I. IS1 elements flank the argF gene segment. Mol Gen Genet. 1981;181(2):230–240. doi: 10.1007/BF00268431. [DOI] [PubMed] [Google Scholar]
  339. ZELLER E. A., VAN ORDEN L. S., VOGTLI W. Enzymology of mycobacteria. VII. Degradation of guanidine derivatives. J Biol Chem. 1954 Jul;209(1):429–435. [PubMed] [Google Scholar]
  340. Zaboura M., Halpern Y. S. Regulation of gamma-aminobutyric acid degradation in Escherichia coli by nitrogen metabolism enzymes. J Bacteriol. 1978 Feb;133(2):447–451. doi: 10.1128/jb.133.2.447-451.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  341. Zalkin H., Argos P., Narayana S. V., Tiedeman A. A., Smith J. M. Identification of a trpG-related glutamine amide transfer domain in Escherichia coli GMP synthetase. J Biol Chem. 1985 Mar 25;260(6):3350–3354. [PubMed] [Google Scholar]
  342. Zidwick M. J., Keller G., Rogers P. Regulation and coupling of argECBH mRNA and enzyme synthesis in cell extracts of Escherichia coli. J Bacteriol. 1984 Aug;159(2):640–646. doi: 10.1128/jb.159.2.640-646.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  343. Zidwick M. J., Korshus J., Rogers P. Positive control of expression of the argECBH gene cluster in vitro by guanosine 5'-diphosphate 3'-diphosphate. J Bacteriol. 1984 Aug;159(2):647–651. doi: 10.1128/jb.159.2.647-651.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  344. Zurawski G., Elseviers D., Stauffer G. V., Yanofsky C. Translational control of transcription termination at the attenuator of the Escherichia coli tryptophan operon. Proc Natl Acad Sci U S A. 1978 Dec;75(12):5988–5992. doi: 10.1073/pnas.75.12.5988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  345. Zurawski G., Gunsalus R. P., Brown K. D., Yanofsky C. Structure and regulation of aroH, the structural gene for the tryptophan-repressible 3-deoxy-D-arabino-heptulosonic acid-7-phosphate synthetase of Escherichia coli. J Mol Biol. 1981 Jan 5;145(1):47–73. doi: 10.1016/0022-2836(81)90334-x. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES