Full text
PDF




















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Agarwal N., Kalra V. K. Purification and functional properties of the DCCD-reactive proteolipid subunit of the H+-translocating ATPase from Mycobacterium phlei. Biochim Biophys Acta. 1983 May 27;723(2):150–159. doi: 10.1016/0005-2728(83)90114-7. [DOI] [PubMed] [Google Scholar]
- Alfonzo M., Kandrach M. A., Racker E. Isolation, characterization, and reconstitution of a solubilized fraction containing the hydrophobic sector of the mitochondrial proton pump. J Bioenerg Biomembr. 1981 Dec;13(5-6):375–391. doi: 10.1007/BF00743211. [DOI] [PubMed] [Google Scholar]
- Altendorf K., Harold F. M., Simoni R. D. Impairment and restoration of the energized state in membrane vesicles of a mutant of Escherichia coli lacking adenosine triphosphatase. J Biol Chem. 1974 Jul 25;249(14):4587–4593. [PubMed] [Google Scholar]
- Altendorf K. Purification of the DCCD-reactive protein of the energy-transducing adenosine triphosphatase complex from Escherichia coli. FEBS Lett. 1977 Feb 1;73(2):271–275. doi: 10.1016/0014-5793(77)80997-6. [DOI] [PubMed] [Google Scholar]
- Amzel L. M., Pedersen P. L. Proton atpases: structure and mechanism. Annu Rev Biochem. 1983;52:801–824. doi: 10.1146/annurev.bi.52.070183.004101. [DOI] [PubMed] [Google Scholar]
- Anderson S., Bankier A. T., Barrell B. G., de Bruijn M. H., Coulson A. R., Drouin J., Eperon I. C., Nierlich D. P., Roe B. A., Sanger F. Sequence and organization of the human mitochondrial genome. Nature. 1981 Apr 9;290(5806):457–465. doi: 10.1038/290457a0. [DOI] [PubMed] [Google Scholar]
- Archinard P., Godinot C., Comte J., Gautheron D. C. Topography of oligomycin sensitivity conferring protein in the mitochondrial adenosinetriphosphatase-ATP synthase. Biochemistry. 1986 Jun 3;25(11):3397–3404. doi: 10.1021/bi00359a045. [DOI] [PubMed] [Google Scholar]
- Aris J. P., Simoni R. D. Cross-linking and labeling of the Escherichia coli F1F0-ATP synthase reveal a compact hydrophilic portion of F0 close to an F1 catalytic subunit. J Biol Chem. 1983 Dec 10;258(23):14599–14609. [PubMed] [Google Scholar]
- Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bengis-Garber C., Gromet-Elhanan Z. Purification of the energy-transducing adenosine triphosphatase complex from Rhodospirillum rubrum. Biochemistry. 1979 Aug 7;18(16):3577–3581. doi: 10.1021/bi00583a022. [DOI] [PubMed] [Google Scholar]
- Berden J. A., Henneke M. A. The uncoupler-binding protein in the proton-pumping ATPase from beef-heart mitochondria. FEBS Lett. 1981 Apr 20;126(2):211–214. doi: 10.1016/0014-5793(81)80244-x. [DOI] [PubMed] [Google Scholar]
- Berden J. A., Voorn-Brouwer M. M. Studies on the ATPase complex from beef-heart mitochondria. I. Isolation and characterization of an oligomycin-sensitive and an olgiomycin-insensitive ATPase complex from beef-heart mitochondria. Biochim Biophys Acta. 1978 Mar 13;501(3):424–439. doi: 10.1016/0005-2728(78)90110-x. [DOI] [PubMed] [Google Scholar]
- Bird C. R., Koller B., Auffret A. D., Huttly A. K., Howe C. J., Dyer T. A., Gray J. C. The wheat chloroplast gene for CF(0) subunit I of ATP synthase contains a large intron. EMBO J. 1985 Jun;4(6):1381–1388. doi: 10.1002/j.1460-2075.1985.tb03790.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bragg P. D., Hou C. Purification of a factor for both aerobic-driven and ATP-driven energy-dependent transhydrogenases of Escherichia coli. FEBS Lett. 1972 Dec 15;28(3):309–312. doi: 10.1016/0014-5793(72)80738-5. [DOI] [PubMed] [Google Scholar]
- Bragg P. D., Hou C. Subunit composition, function, and spatial arrangement in the Ca2+-and Mg2+-activated adenosine triphosphatases of Escherichia coli and Salmonella typhimurium. Arch Biochem Biophys. 1975 Mar;167(1):311–321. doi: 10.1016/0003-9861(75)90467-1. [DOI] [PubMed] [Google Scholar]
- Bragg P. D. The ATPase complex of Escherichia coli. Can J Biochem Cell Biol. 1984 Nov;62(11):1190–1197. doi: 10.1139/o84-153. [DOI] [PubMed] [Google Scholar]
- Brandl C. J., Deber C. M. Hypothesis about the function of membrane-buried proline residues in transport proteins. Proc Natl Acad Sci U S A. 1986 Feb;83(4):917–921. doi: 10.1073/pnas.83.4.917. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cain B. D., Simoni R. D. Impaired proton conductivity resulting from mutations in the a subunit of F1F0 ATPase in Escherichia coli. J Biol Chem. 1986 Aug 5;261(22):10043–10050. [PubMed] [Google Scholar]
- Choo W. M., Hadikusumo R. G., Marzuki S. Mitochondrial adenosine triphosphatase in mit- mutants of Saccharomyces cerevisiase with defective subunit 6 of the enzyme complex. Biochim Biophys Acta. 1985;806(2):290–304. doi: 10.1016/0005-2728(85)90108-2. [DOI] [PubMed] [Google Scholar]
- Clarke D. J., Fuller F. M., Morris J. G. The proton-translocating adenosine triphosphatase of the obligately anaerobic bacterium Clostridium pasteurianum. 1. ATP phosphohydrolase activity. Eur J Biochem. 1979 Aug 1;98(2):597–612. doi: 10.1111/j.1432-1033.1979.tb13222.x. [DOI] [PubMed] [Google Scholar]
- Cohen N. S., Lee S. H., Brodie A. F. Purification and characteristics of hydrophobic membrane protein(s) required for DCCD sensitivity of ATPase in Mycobacterium phlei. J Supramol Struct. 1978;8(1):111–117. doi: 10.1002/jss.400080109. [DOI] [PubMed] [Google Scholar]
- Cox G. B., Fimmel A. L., Gibson F., Hatch L. The mechanism of ATP synthase: a reassessment of the functions of the b and a subunits. Biochim Biophys Acta. 1986 Apr 2;849(1):62–69. doi: 10.1016/0005-2728(86)90096-4. [DOI] [PubMed] [Google Scholar]
- Cox G. B., Jans D. A., Fimmel A. L., Gibson F., Hatch L. Hypothesis. The mechanism of ATP synthase. Conformational change by rotation of the beta-subunit. Biochim Biophys Acta. 1984 Dec 17;768(3-4):201–208. doi: 10.1016/0304-4173(84)90016-8. [DOI] [PubMed] [Google Scholar]
- Cozens A. L., Walker J. E., Phillips A. L., Huttly A. K., Gray J. C. A sixth subunit of ATP synthase, an F(0) component, is encoded in the pea chloroplast genome. EMBO J. 1986 Feb;5(2):217–222. doi: 10.1002/j.1460-2075.1986.tb04201.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cresswell P. Deoxycholic acid-coupled poly(L-lysyl) agarose. An amphipathic matrix with binding affinity for integral membrane proteins. J Biol Chem. 1979 Jan 25;254(2):414–419. [PubMed] [Google Scholar]
- Criddle R. S., Packer L., Shieh P. Oligomycin-dependent ionophoric protein subunit of mitochondrial adenosinetriphosphatase. Proc Natl Acad Sci U S A. 1977 Oct;74(10):4306–4310. doi: 10.1073/pnas.74.10.4306. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Célis H. 1-Butanol extracted proteolipid. Proton conducting properties. Biochem Biophys Res Commun. 1980 Jan 15;92(1):26–31. doi: 10.1016/0006-291x(80)91514-4. [DOI] [PubMed] [Google Scholar]
- Deckers-Hebestreit G., Schmid R., Kiltz H. H., Altendorf K. F0 portion of Escherichia coli ATP synthase: orientation of subunit c in the membrane. Biochemistry. 1987 Aug 25;26(17):5486–5492. doi: 10.1021/bi00391a041. [DOI] [PubMed] [Google Scholar]
- Dunker A. K. A proton motive force transducer and its role in proton pumps, proton engines, tobacco mosaic virus assembly and hemoglobin allosterism. J Theor Biol. 1982 Jul 7;97(1):95–127. doi: 10.1016/0022-5193(82)90281-8. [DOI] [PubMed] [Google Scholar]
- Dunker A. K., Marvin D. A. A model for membrane transport through alpha-helical protein pores. J Theor Biol. 1978 May 8;72(1):9–16. doi: 10.1016/0022-5193(78)90015-2. [DOI] [PubMed] [Google Scholar]
- Dunn S. D., Futai M. Reconstitution of a functional coupling factor from the isolated subunits of Escherichia coli F1 ATPase. J Biol Chem. 1980 Jan 10;255(1):113–118. [PubMed] [Google Scholar]
- Eytan G. D. Use of liposomes for reconstitution of biological functions. Biochim Biophys Acta. 1982 Oct 20;694(2):185–202. doi: 10.1016/0304-4157(82)90024-7. [DOI] [PubMed] [Google Scholar]
- Falk G., Hampe A., Walker J. E. Nucleotide sequence of the Rhodospirillum rubrum atp operon. Biochem J. 1985 Jun 1;228(2):391–407. doi: 10.1042/bj2280391. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fang J. K., Jacobs J. W., Kanner B. I., Racker E., Bradshaw R. A. Amino acid sequence of bovine heart coupling factor 6. Proc Natl Acad Sci U S A. 1984 Nov;81(21):6603–6607. doi: 10.1073/pnas.81.21.6603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fearnley I. M., Walker J. E. Two overlapping genes in bovine mitochondrial DNA encode membrane components of ATP synthase. EMBO J. 1986 Aug;5(8):2003–2008. doi: 10.1002/j.1460-2075.1986.tb04456.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fillingame R. H., Mosher M. E., Negrin R. S., Peters L. K. H+-ATPase of Escherichia coli uncB402 mutation leads to loss of chi subunit of subunit of F0 sector. J Biol Chem. 1983 Jan 10;258(1):604–609. [PubMed] [Google Scholar]
- Fillingame R. H., Peters L. K., White L. K., Mosher M. E., Paule C. R. Mutations altering aspartyl-61 of the omega subunit (uncE protein) of Escherichia coli H+ -ATPase differ in effect on coupled ATP hydrolysis. J Bacteriol. 1984 Jun;158(3):1078–1083. doi: 10.1128/jb.158.3.1078-1083.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Fillingame R. H. Purification of the carbodiimide-reactive protein component of the ATP energy-transducing system of Escherichia coli. J Biol Chem. 1976 Nov 10;251(21):6630–6637. [PubMed] [Google Scholar]
- Foster D. L., Fillingame R. H. Energy-transducing H+-ATPase of Escherichia coli. Purification, reconstitution, and subunit composition. J Biol Chem. 1979 Sep 10;254(17):8230–8236. [PubMed] [Google Scholar]
- Foster D. L., Fillingame R. H. Stoichiometry of subunits in the H+-ATPase complex of Escherichia coli. J Biol Chem. 1982 Feb 25;257(4):2009–2015. [PubMed] [Google Scholar]
- Foster D. L., Mosher M. E., Futai M., Fillingame R. H. Subunits of the H+-ATPase of Escherichia coli. Overproduction of an eight-subunit F1F0-ATPase following induction of a lambda-transducing phage carrying the unc operon. J Biol Chem. 1980 Dec 25;255(24):12037–12041. [PubMed] [Google Scholar]
- Fox R. O., Jr, Richards F. M. A voltage-gated ion channel model inferred from the crystal structure of alamethicin at 1.5-A resolution. Nature. 1982 Nov 25;300(5890):325–330. doi: 10.1038/300325a0. [DOI] [PubMed] [Google Scholar]
- Friedl P., Bienhaus G., Hoppe J., Schairer H. U. The dicyclohexylcarbodiimide-binding protein c of ATP synthase from Escherichia coli is not sufficient to express an efficient H+ conduction. Proc Natl Acad Sci U S A. 1981 Nov;78(11):6643–6646. doi: 10.1073/pnas.78.11.6643. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedl P., Friedl C., Schairer H. U. The ATP synthetase of Escherichia coli K12: purification of the enzyme and reconstitution of energy-transducing activities. Eur J Biochem. 1979 Oct;100(1):175–180. doi: 10.1111/j.1432-1033.1979.tb02046.x. [DOI] [PubMed] [Google Scholar]
- Friedl P., Hoppe J., Gunsalus R. P., Michelsen O., von Meyenburg K., Schairer H. U. Membrane integration and function of the three F0 subunits of the ATP synthase of Escherichia coli K12. EMBO J. 1983;2(1):99–103. doi: 10.1002/j.1460-2075.1983.tb01388.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Friedl P., Schairer H. U. The isolated F0 of Escherichia coli aTP-synthase is reconstitutively active in H+-conduction and ATP-dependent energy-transduction. FEBS Lett. 1981 Jun 15;128(2):261–264. doi: 10.1016/0014-5793(81)80094-4. [DOI] [PubMed] [Google Scholar]
- Futai M., Kanazawa H. Structure and function of proton-translocating adenosine triphosphatase (F0F1): biochemical and molecular biological approaches. Microbiol Rev. 1983 Sep;47(3):285–312. doi: 10.1128/mr.47.3.285-312.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Futai M., Sternweis P. C., Heppel L. A. Purification and properties of reconstitutively active and inactive adenosinetriphosphatase from Escherichia coli. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2725–2729. doi: 10.1073/pnas.71.7.2725. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Galante Y. M., Wong S. Y., Hatefi Y. Resolution and reconstitution of complex V of the mitochondrial oxidative phosphorylation system: properties and composition of the membrane sector. Arch Biochem Biophys. 1981 Oct 15;211(2):643–651. doi: 10.1016/0003-9861(81)90500-2. [DOI] [PubMed] [Google Scholar]
- Gay N. J., Walker J. E. The atp operon: nucleotide sequence of the promoter and the genes for the membrane proteins, and the delta subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 1981 Aug 25;9(16):3919–3926. doi: 10.1093/nar/9.16.3919. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gibson F. Biochemical and genetic studies on the assembly and function of the F1-F0 adenosine triphosphatase of Escherichia coli. Biochem Soc Trans. 1983 Jun;11(3):229–240. doi: 10.1042/bst0110229. [DOI] [PubMed] [Google Scholar]
- Glaser E., Norling B., Ernster L. Reconstitution of mitochondrial oligomycin and dicyclohexylcarbodiimide-sensitive ATPase. Eur J Biochem. 1980 Sep;110(1):225–235. doi: 10.1111/j.1432-1033.1980.tb04859.x. [DOI] [PubMed] [Google Scholar]
- Grisi E., Brown T. A., Waring R. B., Scazzocchio C., Davies R. W. Nucleotide sequence of a region of the mitochondrial genome of Aspergillus nidulans including the gene for ATPase subunit 6. Nucleic Acids Res. 1982 Jun 11;10(11):3531–3539. doi: 10.1093/nar/10.11.3531. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Guerrieri F., Papa S. Effect of chemical modifiers of amino acid residues on proton conduction by the H+-ATPase of mitochondria. J Bioenerg Biomembr. 1981 Dec;13(5-6):393–409. doi: 10.1007/BF00743212. [DOI] [PubMed] [Google Scholar]
- Guerrieri F., Yagi A., Yagi T., Papa S. On the mechanism of H+ translocation by mitochondrial H+ -ATPase. Studies with chemical modifier of tyrosine residues. J Bioenerg Biomembr. 1984 Aug;16(4):251–262. doi: 10.1007/BF00744279. [DOI] [PubMed] [Google Scholar]
- Gunsalus R. P., Brusilow W. S., Simoni R. D. Gene order and gene-polypeptide relationships of the proton-translocating ATPase operon (unc) of Escherichia coli. Proc Natl Acad Sci U S A. 1982 Jan;79(2):320–324. doi: 10.1073/pnas.79.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hanstein W. G. Uncoupling of oxidative phosphorylation. Biochim Biophys Acta. 1976 Sep 27;456(2):129–148. doi: 10.1016/0304-4173(76)90010-0. [DOI] [PubMed] [Google Scholar]
- Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem. 1985;54:1015–1069. doi: 10.1146/annurev.bi.54.070185.005055. [DOI] [PubMed] [Google Scholar]
- Hermolin J., Gallant J., Fillingame R. H. Topology, organization, and function of the psi subunit in the F0 sector of the H+-ATPase of Escherichia coli. J Biol Chem. 1983 Dec 10;258(23):14550–14555. [PubMed] [Google Scholar]
- Hinkle P. C., Horstman L. L. Respiration-driven proton transport in submitochondrial particles. J Biol Chem. 1971 Oct 10;246(19):6024–6028. [PubMed] [Google Scholar]
- Hoppe J., Brunner J., Jørgensen B. B. Structure of the membrane-embedded F0 part of F1F0 ATP synthase from Escherichia coli as inferred from labeling with 3-(Trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine. Biochemistry. 1984 Nov 6;23(23):5610–5616. doi: 10.1021/bi00318a035. [DOI] [PubMed] [Google Scholar]
- Hoppe J., Friedl P., Schairer H. U., Sebald W., von Meyenburg K., Jørgensen B. B. The topology of the proton translocating F0 component of the ATP synthase from E. coli K12: studies with proteases. EMBO J. 1983;2(1):105–110. doi: 10.1002/j.1460-2075.1983.tb01389.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hoppe J., Montecucco C., Friedl P. Labeling of subunit b of the ATP synthase from Escherichia coli with a photoreactive phospholipid analogue. J Biol Chem. 1983 Mar 10;258(5):2882–2885. [PubMed] [Google Scholar]
- Hoppe J., Schairer H. U., Friedl P., Sebald W. An Asp-Asn substitution in the proteolipid subunit of the ATP-synthase from Escherichia coli leads to a non-functional proton channel. FEBS Lett. 1982 Aug 16;145(1):21–29. doi: 10.1016/0014-5793(82)81198-8. [DOI] [PubMed] [Google Scholar]
- Hoppe J., Sebald W. Amino acid sequence of the proteolipid subunit of the proton-translocating ATPase complex from the thermophilic bacterium PS-3. Eur J Biochem. 1980;107(1):57–65. doi: 10.1111/j.1432-1033.1980.tb04624.x. [DOI] [PubMed] [Google Scholar]
- Hoppe J., Sebald W. The proton conducting F0-part of bacterial ATP synthases. Biochim Biophys Acta. 1984 Apr 9;768(1):1–27. doi: 10.1016/0304-4173(84)90005-3. [DOI] [PubMed] [Google Scholar]
- Hoppe J., Sebald W. Topological studies suggest that the pathway of the protons through F0 is provided by amino acid residues accessible from the lipid phase. Biochimie. 1986 Mar;68(3):427–434. doi: 10.1016/s0300-9084(86)80010-4. [DOI] [PubMed] [Google Scholar]
- Houstek J., Kopecký J., Svoboda P., Drahota Z. Structure and function of the membrane-integral components of the mitochondrial H+-ATPase. J Bioenerg Biomembr. 1982 Feb;14(1):1–13. doi: 10.1007/BF00744075. [DOI] [PubMed] [Google Scholar]
- Howe C. J., Auffret A. D., Doherty A., Bowman C. M., Dyer T. A., Gray J. C. Location and nucleotide sequence of the gene for the proton-translocating subunit of wheat chloroplast ATP synthase. Proc Natl Acad Sci U S A. 1982 Nov;79(22):6903–6907. doi: 10.1073/pnas.79.22.6903. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Huang Y., Pringle M. J., Sanadi D. R. Diamide blocks H+ conductance in mitochondrial H+-ATPase by oxidizing FB dithiol. FEBS Lett. 1985 Nov 11;192(1):83–87. doi: 10.1016/0014-5793(85)80048-x. [DOI] [PubMed] [Google Scholar]
- Hughes J., Joshi S., Torok K., Sanadi D. R. Isolation of a highly active H+-ATPase from beef heart mitochondria. J Bioenerg Biomembr. 1982 Dec;14(5-6):287–295. doi: 10.1007/BF00743058. [DOI] [PubMed] [Google Scholar]
- Jans D. A., Fimmel A. L., Hatch L., Gibson F., Cox G. B. An additional acidic residue in the membrane portion of the b-subunit of the energy-transducing adenosine triphosphatase of Escherichia coli affects both assembly and function. Biochem J. 1984 Jul 1;221(1):43–51. doi: 10.1042/bj2210043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jans D. A., Hatch L., Fimmel A. L., Gibson F., Cox G. B. An acidic or basic amino acid at position 26 of the b subunit of Escherichia coli F1F0-ATPase impairs membrane proton permeability: suppression of the uncF469 nonsense mutation. J Bacteriol. 1984 Nov;160(2):764–770. doi: 10.1128/jb.160.2.764-770.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jans D. A., Hatch L., Fimmel A. L., Gibson F., Cox G. B. Complementation between uncF alleles affecting assembly of the F1F0-ATPase complex of Escherichia coli. J Bacteriol. 1985 Apr;162(1):420–426. doi: 10.1128/jb.162.1.420-426.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Joshi S., Hughes J. B., Shaikh F., Sanadi D. R. On the role of coupling factor B in the mitochondrial Pi-ATP exchange reaction. J Biol Chem. 1979 Oct 25;254(20):10145–10152. [PubMed] [Google Scholar]
- Joshi S., Pringle M. J., Siber R. Topology and function of "stalk" proteins in the bovine mitochondrial H+-ATPase. J Biol Chem. 1986 Aug 15;261(23):10653–10658. [PubMed] [Google Scholar]
- Kagawa Y., Sone N., Hirata H., Yoshida M. Structure and function of H+-ATPase. J Bioenerg Biomembr. 1979 Aug;11(3-4):39–78. doi: 10.1007/BF00743196. [DOI] [PubMed] [Google Scholar]
- Kagawa Y., Sone N., Yoshida M., Hirata H., Okamoto H. Proton translocating ATPase of a thermophilic bacterium. Morphology, subunits, and chemical composition. J Biochem. 1976 Jul;80(1):141–151. doi: 10.1093/oxfordjournals.jbchem.a131246. [DOI] [PubMed] [Google Scholar]
- Kanazawa H., Mabuchi K., Kayano T., Noumi T., Sekiya T., Futai M. Nucleotide sequence of the genes for F0 components of the proton-translocating ATPase from Escherichia coli: prediction of the primary structure of F0 subunits. Biochem Biophys Res Commun. 1981 Nov 30;103(2):613–620. doi: 10.1016/0006-291x(81)90495-2. [DOI] [PubMed] [Google Scholar]
- Kanner B. I., Serrano R., Kandrach M. A., Racker E. Preparation and characterization of homogeneous coupling factor 6 from bovine heart mitochondria. Biochem Biophys Res Commun. 1976 Apr 19;69(4):1050–1056. doi: 10.1016/0006-291x(76)90479-4. [DOI] [PubMed] [Google Scholar]
- Koch G. Synthesis of the mitochondrial inner membrane in cultured Xenopus laevis oocytes. J Biol Chem. 1976 Oct 10;251(19):6097–6107. [PubMed] [Google Scholar]
- Konishi T., Packer L., Criddle R. Purification and assay of a proteolipid ionophore from yeast mitochondrial ATP synthetase. Methods Enzymol. 1979;55:414–421. doi: 10.1016/0076-6879(79)55055-1. [DOI] [PubMed] [Google Scholar]
- Kopecky J., Guerrieri F., Papa S. Interaction of dicyclohexylcarbodiimide with the proton-conducting pathway of mitochondrial H+-ATPase. Eur J Biochem. 1983 Mar 1;131(1):17–24. doi: 10.1111/j.1432-1033.1983.tb07226.x. [DOI] [PubMed] [Google Scholar]
- Kumamoto C. A., Simoni R. D. Genetic evidence for interaction between the a and b subunits of the F0 portion of the Escherichia coli proton translocating ATPase. J Biol Chem. 1986 Aug 5;261(22):10037–10042. [PubMed] [Google Scholar]
- Leimgruber R. M., Jensen C., Abrams A. Purification and characterization of the membrane adenosine triphosphatase complex from the wild-type and N,N'-dicyclohexylcarbodiimide-resistant strains of Streptococcus faecalis. J Bacteriol. 1981 Aug;147(2):363–372. doi: 10.1128/jb.147.2.363-372.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnett P. E., Beechey R. B. Inhibitors of the ATP synthethase system. Methods Enzymol. 1979;55:472–518. doi: 10.1016/0076-6879(79)55061-7. [DOI] [PubMed] [Google Scholar]
- Linnett P. E., Mitchell A. D., Partis M. D., Beechey R. B. Preparation of the soluble ATPase from mitochondria, chloroplasts, and bacteria by the chloroform technique. Methods Enzymol. 1979;55:337–343. doi: 10.1016/0076-6879(79)55042-3. [DOI] [PubMed] [Google Scholar]
- Loo T. W., Bragg P. D. The DCCD-binding polypeptide alone is insufficient for proton translocation through F0 in membranes of Escherichia coli. Biochem Biophys Res Commun. 1981 Nov 16;103(1):52–59. doi: 10.1016/0006-291x(81)91659-4. [DOI] [PubMed] [Google Scholar]
- Loo T. W., Bragg P. D. The DCCD-binding polypeptide is close to the F1 ATPase-binding site on the cytoplasmic surface of the cell membrane of Escherichia coli. Biochem Biophys Res Commun. 1982 May 31;106(2):400–406. doi: 10.1016/0006-291x(82)91124-x. [DOI] [PubMed] [Google Scholar]
- Loo T. W., Stan-Lotter H., MacKenzie D., Molday R. S., Bragg P. D. Interaction of Escherichia coli F1-ATPase with dicyclohexylcarbodiimide-binding polypeptide. Biochim Biophys Acta. 1983 Sep 7;733(2):274–282. doi: 10.1016/0005-2736(83)90532-1. [DOI] [PubMed] [Google Scholar]
- Lubberding H. J., Zimmer G., van Walraven H. S., Schrickx J., Kraayenhof R. Isolation, purification and characterization of the ATPase complex from the thermophilic cyanobacterium Synechococcus 6716. Eur J Biochem. 1983 Dec 1;137(1-2):95–99. doi: 10.1111/j.1432-1033.1983.tb07800.x. [DOI] [PubMed] [Google Scholar]
- Ludwig B., Prochaska L., Capaldi R. A. Arrangement of oligomycin-sensitive adenosine triphosphatase in the mitochondrial inner membrane. Biochemistry. 1980 Apr 1;19(7):1516–1523. doi: 10.1021/bi00548a039. [DOI] [PubMed] [Google Scholar]
- Lugtenberg E. J., Peters R. Distribution of lipids in cytoplasmic and outer membranes of Escherichia coli K12. Biochim Biophys Acta. 1976 Jul 20;441(1):38–47. doi: 10.1016/0005-2760(76)90279-4. [DOI] [PubMed] [Google Scholar]
- Lötscher H. R., deJong C., Capaldi R. A. Modification of the F0 portion of the H+-translocating adenosinetriphosphatase complex of Escherichia coli by the water-soluble carbodiimide 1-ethyl-3-[3-(dimethylamino)propyl]carbodiimide and effect on the proton channeling function. Biochemistry. 1984 Aug 28;23(18):4128–4134. doi: 10.1021/bi00313a018. [DOI] [PubMed] [Google Scholar]
- Lünsdorf H., Ehrig K., Friedl P., Schairer H. U. Use of monoclonal antibodies in immuno-electron microscopy for the determination of subunit stoichiometry in oligomeric enzymes. There are three alpha-subunits in the F1-ATPase of Escherichia coli. J Mol Biol. 1984 Feb 15;173(1):131–136. doi: 10.1016/0022-2836(84)90408-x. [DOI] [PubMed] [Google Scholar]
- MUELLER P., RUDIN D. O., TIEN H. T., WESCOTT W. C. Reconstitution of cell membrane structure in vitro and its transformation into an excitable system. Nature. 1962 Jun 9;194:979–980. doi: 10.1038/194979a0. [DOI] [PubMed] [Google Scholar]
- MacLennan D. H., Tzagoloff A. Studies on the mitochondrial adenosine triphosphatase system. IV. Purification and characterization of the oligomycin sensitivity conferring protein. Biochemistry. 1968 Apr;7(4):1603–1610. doi: 10.1021/bi00844a050. [DOI] [PubMed] [Google Scholar]
- Macino G., Tzagoloff A. Assembly of the mitochondrial membrane system: sequence analysis of a yeast mitochondrial ATPase gene containing the oli-2 and oli-4 loci. Cell. 1980 Jun;20(2):507–517. doi: 10.1016/0092-8674(80)90637-6. [DOI] [PubMed] [Google Scholar]
- Macreadie I. G., Novitski C. E., Maxwell R. J., John U., Ooi B. G., McMullen G. L., Lukins H. B., Linnane A. W., Nagley P. Biogenesis of mitochondria: the mitochondrial gene (aap1) coding for mitochondrial ATPase subunit 8 in Saccharomyces cerevisiae. Nucleic Acids Res. 1983 Jul 11;11(13):4435–4451. doi: 10.1093/nar/11.13.4435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Matsuno-Yagi A., Yagi T., Hatefi Y. Studies on the mechanism of oxidative phosphorylation: effects of specific F0 modifiers on ligand-induced conformation changes of F1. Proc Natl Acad Sci U S A. 1985 Nov;82(22):7550–7554. doi: 10.1073/pnas.82.22.7550. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McEnery M. W., Buhle E. L., Jr, Aebi U., Pedersen P. L. Proton ATPase of rat liver mitochondria. Preparation and visualization of a functional complex using the novel zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. J Biol Chem. 1984 Apr 10;259(7):4642–4651. [PubMed] [Google Scholar]
- Miki T., Hiraga S., Nagata T., Yura T. Bacteriophage lambda carrying the Escherichia coli chromosomal region of the replication origin. Proc Natl Acad Sci U S A. 1978 Oct;75(10):5099–5103. doi: 10.1073/pnas.75.10.5099. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Montal M., Darszon A., Schindler H. Functional reassembly of membrane proteins in planar lipid bilayers. Q Rev Biophys. 1981 Feb;14(1):1–79. doi: 10.1017/s0033583500002079. [DOI] [PubMed] [Google Scholar]
- Moran A., Tal E., Eytan E., Nelson N. Study of proton pumps by phospholipid-impregnated Millipore filters. FEBS Lett. 1980 Jan 28;110(1):62–64. doi: 10.1016/0014-5793(80)80023-8. [DOI] [PubMed] [Google Scholar]
- Mosher M. E., Peters L. K., Fillingame R. H. Use of lambda unc transducing bacteriophages in genetic and biochemical characterization of H+-ATPase mutants of Escherichia coli. J Bacteriol. 1983 Dec;156(3):1078–1092. doi: 10.1128/jb.156.3.1078-1092.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mosher M. E., White L. K., Hermolin J., Fillingame R. H. H+-ATPase of Escherichia coli. An uncE mutation impairing coupling between F1 and Fo but not Fo-mediated H+ translocation. J Biol Chem. 1985 Apr 25;260(8):4807–4814. [PubMed] [Google Scholar]
- Mullet J. E., Pick U., Arntzen C. J. Structural analysis of the isolated chloroplast coupling factor and the N,N'-dicyclohexylcarbodiimide binding proteolipid. Biochim Biophys Acta. 1981 Mar 20;642(1):149–157. doi: 10.1016/0005-2736(81)90145-0. [DOI] [PubMed] [Google Scholar]
- Muñoz E. Polymorphism and conformational dynamics of F1-ATPases from bacterial membranes. A model for the regulation of these enzymes on the basis of molecular plasticity. Biochim Biophys Acta. 1982 May 12;650(4):233–265. doi: 10.1016/0304-4157(82)90018-1. [DOI] [PubMed] [Google Scholar]
- Nagle J. F., Morowitz H. J. Molecular mechanisms for proton transport in membranes. Proc Natl Acad Sci U S A. 1978 Jan;75(1):298–302. doi: 10.1073/pnas.75.1.298. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nagle J. F., Tristram-Nagle S. Hydrogen bonded chain mechanisms for proton conduction and proton pumping. J Membr Biol. 1983;74(1):1–14. doi: 10.1007/BF01870590. [DOI] [PubMed] [Google Scholar]
- Negrin R. S., Foster D. L., Fillingame R. H. Energy-transducing H+-ATPase of Escherichia coli. Reconstitution of proton translocation activity of the intrinsic membrane sector. J Biol Chem. 1980 Jun 25;255(12):5643–5648. [PubMed] [Google Scholar]
- Nelson N., Eytan E., Notsani B. E., Sigrist H., Sigrist-Nelson K., Gitler C. Isolation of a chloroplast N,N'-dicyclohexylcarbodiimide-binding proteolipid, active in proton translocation. Proc Natl Acad Sci U S A. 1977 Jun;74(6):2375–2378. doi: 10.1073/pnas.74.6.2375. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson N., Nelson H., Schatz G. Biosynthesis and assembly of the proton-translocating adenosine triphosphatase complex from chloroplasts. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1361–1364. doi: 10.1073/pnas.77.3.1361. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nelson N. Proton channels in chloroplast membranes. Ann N Y Acad Sci. 1980;358:25–35. doi: 10.1111/j.1749-6632.1980.tb15383.x. [DOI] [PubMed] [Google Scholar]
- Nielsen J., Hansen F. G., Hoppe J., Friedl P., von Meyenburg K. The nucleotide sequence of the atp genes coding for the F0 subunits a, b, c and the F1 subunit delta of the membrane bound ATP synthase of Escherichia coli. Mol Gen Genet. 1981;184(1):33–39. doi: 10.1007/BF00271191. [DOI] [PubMed] [Google Scholar]
- Okamoto H., Sone N., Hirata H., Yoshida M., Kagawa Y. Purified proton conductor in proton translocating adenosine triphosphatase of a thermophilic bacterium. J Biol Chem. 1977 Sep 10;252(17):6125–6131. [PubMed] [Google Scholar]
- Orian J. M., Marzuki S. The largest mitochondrial translation product copurifying with the mitochondrial adenosine triphosphatase of Saccharomyces cerevisiae is not a subunit of the enzyme complex. J Bacteriol. 1981 May;146(2):813–815. doi: 10.1128/jb.146.2.813-815.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ovchinnikov YuA, Modyanov N. N., Grinkevich V. A., Aldanova N. A., Kostetsky P. V., Trubetskaya O. E., Hundal T., Ernster L. Oligomycin sensitivity-conferring protein (OSCP) of beef heart mitochondria. Internal sequence homology and structural relationship with other proteins. FEBS Lett. 1984 Sep 17;175(1):109–112. doi: 10.1016/0014-5793(84)80580-3. [DOI] [PubMed] [Google Scholar]
- Ovchinnikov Y. A., Modyanov N. N., Grinkevich V. A., Aldanova N. A., Trubetskaya O. E., Nazimov I. V., Hundal T., Ernster L. Amino acid sequence of the oligomycin sensitivity-conferring protein (OSCP) of beef-heart mitochondria and its homology with the delta-subunit of the F1-ATPase of Escherichia coli. FEBS Lett. 1984 Jan 23;166(1):19–22. doi: 10.1016/0014-5793(84)80036-8. [DOI] [PubMed] [Google Scholar]
- PULLMAN M. E., MONROY G. C. A NATURALLY OCCURRING INHIBITOR OF MITOCHONDRIAL ADENOSINE TRIPHOSPHATASE. J Biol Chem. 1963 Nov;238:3762–3769. [PubMed] [Google Scholar]
- Penefsky H. S. Energy-dependent dissociation of ATP from high affinity catalytic sites of beef heart mitochondrial adenosine triphosphatase. J Biol Chem. 1985 Nov 5;260(25):13735–13741. [PubMed] [Google Scholar]
- Penefsky H. S. Mechanism of inhibition of mitochondrial adenosine triphosphatase by dicyclohexylcarbodiimide and oligomycin: relationship to ATP synthesis. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1589–1593. doi: 10.1073/pnas.82.6.1589. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Perlin D. S., Cox D. N., Senior A. E. Integration of F1 and the membrane sector of the proton-ATPase of Escherichia coli. Role of subunit "b" (uncF protein). J Biol Chem. 1983 Aug 25;258(16):9793–9800. [PubMed] [Google Scholar]
- Perlin D. S., Latchney L. R., Senior A. E. Inhibition of Escherichia coli H+-ATPase by venturicidin, oligomycin and ossamycin. Biochim Biophys Acta. 1985 May 31;807(3):238–244. doi: 10.1016/0005-2728(85)90254-3. [DOI] [PubMed] [Google Scholar]
- Perlin D. S., Senior A. E. Functional effects and cross-reactivity of antibody to purified subunit b (uncF protein) of Escherichia coli proton-ATPase. Arch Biochem Biophys. 1985 Feb 1;236(2):603–611. doi: 10.1016/0003-9861(85)90664-2. [DOI] [PubMed] [Google Scholar]
- Pick U., Racker E. Purification and reconstitution of the N,N'-dicyclohexylcarbodiimide-sensitive ATPase complex from spinach chloroplasts. J Biol Chem. 1979 Apr 25;254(8):2793–2799. [PubMed] [Google Scholar]
- Porter A. C., Kumamoto C., Aldape K., Simoni R. D. Role of the b subunit of the Escherichia coli proton-translocating ATPase. A mutagenic analysis. J Biol Chem. 1985 Jul 5;260(13):8182–8187. [PubMed] [Google Scholar]
- Racker E. Reconstitution of membrane processes. Methods Enzymol. 1979;55:699–711. doi: 10.1016/0076-6879(79)55078-2. [DOI] [PubMed] [Google Scholar]
- Rott R., Nelson N. Purification and immunological properties of proton-ATPase complexes from yeast and rat liver mitochondria. J Biol Chem. 1981 Sep 10;256(17):9224–9228. [PubMed] [Google Scholar]
- Russell L. K., Kirkley S. A., Kleyman T. R., Chan S. H. Isolation and properties of OSCP and an F1-ATPase binding protein from rat liver mitochondria - evidence against OSCP as the linking "stalk" between F1 and the membrane. Biochem Biophys Res Commun. 1976 Nov 22;73(2):434–443. doi: 10.1016/0006-291x(76)90726-9. [DOI] [PubMed] [Google Scholar]
- Sanadi D. R., Pringle M., Kantham L., Hughes J. B., Srivastava A. Evidence for the involvement of coupling factor B in the H+ channel of the mitochondrial H+-ATPase. Proc Natl Acad Sci U S A. 1984 Mar;81(5):1371–1374. doi: 10.1073/pnas.81.5.1371. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Sandri G., Wojtczak L., Ernster L. Cation-dependent reassembly of F0F1-ATPase in submitochondrial particles: evidence for a binding site for F1 on F0 in the absence of F6 and oligomycin sensitivity-conferring protein. Arch Biochem Biophys. 1985 Jun;239(2):595–602. doi: 10.1016/0003-9861(85)90729-5. [DOI] [PubMed] [Google Scholar]
- Schindler H., Nelson N. Proteolipid of adenosinetriphosphatase from yeast mitochondria forms proton-selective channels in planar lipid bilayers. Biochemistry. 1982 Nov 9;21(23):5787–5794. doi: 10.1021/bi00266a010. [DOI] [PubMed] [Google Scholar]
- Schmitt M., Rittinghaus K., Scheurich P., Schwulera U., Dose K. Immunological properties of membrane-bound adenosine triphosphatase: immunological identification of rutamycin-sensitive F0.F1ATPase from Micrococcus luteus ATCC 4698 established by crossed immunoelectrophoresis. Biochim Biophys Acta. 1978 Jun 2;509(3):410–418. doi: 10.1016/0005-2736(78)90235-3. [DOI] [PubMed] [Google Scholar]
- Schneider E., Altendorf K. ATP synthetase (F1F0) of Escherichia coli K-12. High-yield preparation of functional F0 by hydrophobic affinity chromatography. Eur J Biochem. 1982 Aug;126(1):149–153. doi: 10.1111/j.1432-1033.1982.tb06759.x. [DOI] [PubMed] [Google Scholar]
- Schneider E., Altendorf K. All three subunits are required for the reconstitution of an active proton channel (F0) of Escherichia coli ATP synthase (F1F0). EMBO J. 1985 Feb;4(2):515–518. doi: 10.1002/j.1460-2075.1985.tb03658.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider E., Altendorf K. Modification of subunit b of the F0 complex from Escherichia coli ATP synthase by a hydrophobic maleimide and its effects on F0 functions. Eur J Biochem. 1985 Nov 15;153(1):105–109. doi: 10.1111/j.1432-1033.1985.tb09274.x. [DOI] [PubMed] [Google Scholar]
- Schneider E., Altendorf K. Proton-conducting portion (F0) from Escherichia coli ATP synthase: preparation, dissociation into subunits, and reconstitution of an active complex. Methods Enzymol. 1986;126:569–578. doi: 10.1016/s0076-6879(86)26059-0. [DOI] [PubMed] [Google Scholar]
- Schneider E., Altendorf K. Reconstitution of the purified proton conductor (F0) of the adenosine triphosphatase complex from Escherichia coli. FEBS Lett. 1980 Jul 28;116(2):173–176. doi: 10.1016/0014-5793(80)80636-3. [DOI] [PubMed] [Google Scholar]
- Schneider E., Altendorf K. Subunit b of the membrane moiety (F0) of ATP synthase (F1F0) from Escherichia coli is indispensable for H+ translocation and binding of the water-soluble F1 moiety. Proc Natl Acad Sci U S A. 1984 Dec;81(23):7279–7283. doi: 10.1073/pnas.81.23.7279. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schneider E., Friedl P., Schwuléra U., Dose K. Energy-linked reactions catalyzed by the purified ATPase complex (F0F1) from Rhodospirillum rubrum chromatophores. Eur J Biochem. 1980;108(1):331–336. doi: 10.1111/j.1432-1033.1980.tb04727.x. [DOI] [PubMed] [Google Scholar]
- Schuldiner S., Rottenberg H., Avron M. Determination of pH in chloroplasts. 2. Fluorescent amines as a probe for the determination of pH in chloroplasts. Eur J Biochem. 1972 Jan 31;25(1):64–70. doi: 10.1111/j.1432-1033.1972.tb01667.x. [DOI] [PubMed] [Google Scholar]
- Schulten Z., Schulten K. A model for the resistance of the proton channel formed by the proteolipid of ATPase. Eur Biophys J. 1985;11(3):149–155. doi: 10.1007/BF00257393. [DOI] [PubMed] [Google Scholar]
- Sebald W., Friedl P., Schairer H. U., Hoppe J. Structure and genetics of the H+-conducting F0 portion of the ATP synthase. Ann N Y Acad Sci. 1982;402:28–44. doi: 10.1111/j.1749-6632.1982.tb25730.x. [DOI] [PubMed] [Google Scholar]
- Sebald W., Wild G. Mitochondrial ATPase complex from Neurospora crassa. Methods Enzymol. 1979;55:344–351. doi: 10.1016/0076-6879(79)55043-5. [DOI] [PubMed] [Google Scholar]
- Senior A. E. Secondary and tertiary structure of membrane proteins involved in proton translocation. Biochim Biophys Acta. 1983 Jul 15;726(2):81–95. doi: 10.1016/0304-4173(83)90001-0. [DOI] [PubMed] [Google Scholar]
- Senior A. E., Wise J. G. The proton-ATPase of bacteria and mitochondria. J Membr Biol. 1983;73(2):105–124. doi: 10.1007/BF01870434. [DOI] [PubMed] [Google Scholar]
- Seren S., Caporin G., Galiazzo F., Lippe G., Ferguson S. J., Sorgato M. C. Current-voltage relationships for proton flow through the F0 sector of the ATP-synthase, carbonylcyanide-p-trifluoromethoxyphenylhydrazone or leak pathways in submitochondrial particles. Eur J Biochem. 1985 Oct 15;152(2):373–379. doi: 10.1111/j.1432-1033.1985.tb09207.x. [DOI] [PubMed] [Google Scholar]
- Serrano R., Kanner B. I., Racker E. Purification and properties of the proton-translocating adenosine triphosphatase complex of bovine heart mitochondria. J Biol Chem. 1976 Apr 25;251(8):2453–2461. [PubMed] [Google Scholar]
- Shchipakin V., Chuchlova E., Evtodienko Y. Construction of mitochondrial H+ -transporting system in proteoliposomes. Biochem Biophys Res Commun. 1976 Mar 8;69(1):123–127. doi: 10.1016/s0006-291x(76)80281-1. [DOI] [PubMed] [Google Scholar]
- Sigrist-Nelson K., Azzi A. The proteolipid subunit of the chloroplast adenosine triphosphatase complex. Reconstitution and demonstration of proton-conductive properties. J Biol Chem. 1980 Nov 25;255(22):10638–10643. [PubMed] [Google Scholar]
- Smith J. B., Sternweis P. C. Purification of membrane attachment and inhibitory subunits of the proton translocating adenosine triphosphatase from Escherichia coli. Biochemistry. 1977 Jan 25;16(2):306–311. doi: 10.1021/bi00621a023. [DOI] [PubMed] [Google Scholar]
- Sone N., Hamamoto T., Kagawa Y. pH dependence of H+ conduction through the membrane moiety of the H+-ATPase (F0 . F1) and effects of tyrosyl residue modification. J Biol Chem. 1981 Mar 25;256(6):2873–2877. [PubMed] [Google Scholar]
- Sone N., Yoshida M., Hirata H., Kagawa Y. Purification and properties of a dicyclohexylcarbodiimide-sensitive adenosine triphosphatase from a thermophilic bacterium. J Biol Chem. 1975 Oct 10;250(19):7917–7923. [PubMed] [Google Scholar]
- Sone N., Yoshida M., Hirata H., Kagawa Y. Resolution of the membrane moiety of the H+-ATPase complex into two kinds of subunits. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4219–4223. doi: 10.1073/pnas.75.9.4219. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Steffens K., Di Gioia A., Deckers-Hebestreit G., Altendorf K. Structural and functional relationship of ATP synthases (F1F0) from Escherichia coli and the thermophilic bacterium PS3. J Biol Chem. 1987 May 5;262(13):6334–6338. [PubMed] [Google Scholar]
- Steffens K., Kiltz H. H., Schneider E., Schmid R., Altendorf K. ATP-synthetase complex (F1F0) from Escherichia coli. Purification and characterization of subunits A and B of the F0 part. FEBS Lett. 1982 Jun 1;142(1):151–154. doi: 10.1016/0014-5793(82)80240-8. [DOI] [PubMed] [Google Scholar]
- Steffens K., Schneider E., Deckers-Hebestreit G., Altendorf K. Fo portion of Escherichia coli ATP synthase. Further resolution of trypsin-generated fragments from subunit b. J Biol Chem. 1987 Apr 25;262(12):5866–5869. [PubMed] [Google Scholar]
- Steffens K., Schneider E., Herkenhoff B., Schmid R., Altendorf K. Chemical modification of the F0 part of the ATP synthase (F1F0) from Escherichia coli. Effects on proton conduction and F1 binding. Eur J Biochem. 1984 Feb 1;138(3):617–622. doi: 10.1111/j.1432-1033.1984.tb07959.x. [DOI] [PubMed] [Google Scholar]
- Sternweis P. C., Smith J. B. Characterization of the purified membrane attachment (beta) subunit of the proton translocating adenosine triphosphatase from Escherichia coli. Biochemistry. 1977 Sep 6;16(18):4020–4025. doi: 10.1021/bi00637a013. [DOI] [PubMed] [Google Scholar]
- Stiggall D. L., Galante Y. M., Hatefi Y. Preparation and properties of an ATP-Pi exchange complex (complex V) from bovine heart mitochondria. J Biol Chem. 1978 Feb 10;253(3):956–964. [PubMed] [Google Scholar]
- Stoeckenius W., Bogomolni R. A. Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem. 1982;51:587–616. doi: 10.1146/annurev.bi.51.070182.003103. [DOI] [PubMed] [Google Scholar]
- Takeda K., Hirano M., Kanazawa H., Nukiwa N., Kagawa Y., Futai M. Hybrid ATPase's formed from subunits of coupling factor F1's of Escherichia coli and thermophilic bacterium PS3. J Biochem. 1982 Feb;91(2):695–701. doi: 10.1093/oxfordjournals.jbchem.a133742. [DOI] [PubMed] [Google Scholar]
- Tiedge H., Lünsdorf H., Schäfer G., Schairer H. U. Subunit stoichiometry and juxtaposition of the photosynthetic coupling factor 1: Immunoelectron microscopy using monoclonal antibodies. Proc Natl Acad Sci U S A. 1985 Dec;82(23):7874–7878. doi: 10.1073/pnas.82.23.7874. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Todd R. D., Griesenbeck T. A., Douglas M. G. The yeast mitochondrial adenosine triphosphatase complex. Subunit stoichiometry and physical characterization. J Biol Chem. 1980 Jun 10;255(11):5461–5467. [PubMed] [Google Scholar]
- Torok K., Joshi S. Cross-linking of bovine mitochondrial H+-ATPase by copper--o-phenanthroline. Interaction of the oligomycin-sensitivity-conferring protein with a 24-kDa protein. Eur J Biochem. 1985 Nov 15;153(1):155–159. doi: 10.1111/j.1432-1033.1985.tb09281.x. [DOI] [PubMed] [Google Scholar]
- Tybulewicz V. L., Falk G., Walker J. E. Rhodopseudomonas blastica atp operon. Nucleotide sequence and transcription. J Mol Biol. 1984 Oct 25;179(2):185–214. doi: 10.1016/0022-2836(84)90465-0. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Meagher P. Assembly of the mitochondrial membrane system. V. Properties of a dispersed preparation of the rutamycin-sensitive adenosine triphosphatase of yeast mitochondria. J Biol Chem. 1971 Dec 10;246(23):7328–7336. [PubMed] [Google Scholar]
- Tzagoloff A. Oligomycin-sensitive ATPase of Saccharomyces cerevisiae. Methods Enzymol. 1979;55:351–358. doi: 10.1016/0076-6879(79)55044-7. [DOI] [PubMed] [Google Scholar]
- Tzagoloff A., Rubin M. S., Sierra M. F. Biosynthesis of mitochondrial enzymes. Biochim Biophys Acta. 1973 Feb 12;301(1):71–104. doi: 10.1016/0304-4173(73)90013-x. [DOI] [PubMed] [Google Scholar]
- Velours J., Esparza M., Hoppe J., Sebald W., Guerin B. Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae. EMBO J. 1984 Jan;3(1):207–212. doi: 10.1002/j.1460-2075.1984.tb01785.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vignais P. V., Satre M. Recent developments on structural and functional aspects of the F1 sector of H+-linked ATPases. Mol Cell Biochem. 1984;60(1):33–71. doi: 10.1007/BF00226299. [DOI] [PubMed] [Google Scholar]
- Vàdineanu A., Berden J. A., Slater E. C. Proteins required for the binding of mitrochondrial ATPase to the mitochondrial inner membrane. Biochim Biophys Acta. 1976 Dec 6;449(3):468–479. doi: 10.1016/0005-2728(76)90156-0. [DOI] [PubMed] [Google Scholar]
- Walker J. E., Runswick M. J., Saraste M. Subunit equivalence in Escherichia coli and bovine heart mitochondrial F1F0 ATPases. FEBS Lett. 1982 Sep 20;146(2):393–396. doi: 10.1016/0014-5793(82)80960-5. [DOI] [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Gay N. J. E. coli F1-ATPase interacts with a membrane protein component of a proton channel. Nature. 1982 Aug 26;298(5877):867–869. doi: 10.1038/298867a0. [DOI] [PubMed] [Google Scholar]
- Walker J. E., Saraste M., Gay N. J. The unc operon. Nucleotide sequence, regulation and structure of ATP-synthase. Biochim Biophys Acta. 1984 Sep 6;768(2):164–200. doi: 10.1016/0304-4173(84)90003-x. [DOI] [PubMed] [Google Scholar]
- Wikström M., Krab K., Saraste M. Proton-translocating cytochrome complexes. Annu Rev Biochem. 1981;50:623–655. doi: 10.1146/annurev.bi.50.070181.003203. [DOI] [PubMed] [Google Scholar]
- Younis H. M., Winget G. D. CF1-dependent restoration of energy-linked reactions reconstituted with a hydrophobic protein from spinach chloroplasts. Biochem Biophys Res Commun. 1977 Jul 11;77(1):168–174. doi: 10.1016/s0006-291x(77)80179-4. [DOI] [PubMed] [Google Scholar]
- Zanotti F., Guerrieri F., Scarfò R., Berden J., Papa S. Effect of diamide on proton translocation by the mitochondrial H+-ATPase. Biochem Biophys Res Commun. 1985 Nov 15;132(3):985–990. doi: 10.1016/0006-291x(85)91904-7. [DOI] [PubMed] [Google Scholar]
- de Jong L., Holtrop M., Kroon A. M. The biogenesis of rat liver mitochondrial ATPase. Subunit composition of the normal ATPase complex and of the deficient complex formed when mitochondrial protein synthesis is blocked. Biochim Biophys Acta. 1979 Oct 10;548(1):48–62. doi: 10.1016/0005-2728(79)90186-5. [DOI] [PubMed] [Google Scholar]
- von Meyenburg K., Jørgensen B. B., Michelsen O., Sørensen L., McCarthy J. E. Proton conduction by subunit a of the membrane-bound ATP synthase of Escherichia coli revealed after induced overproduction. EMBO J. 1985 Sep;4(9):2357–2363. doi: 10.1002/j.1460-2075.1985.tb03939.x. [DOI] [PMC free article] [PubMed] [Google Scholar]

