Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1988 Sep;52(3):354–374. doi: 10.1128/mr.52.3.354-374.1988

Transfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.

G Eggertsson, D Söll
PMCID: PMC373150  PMID: 3054467

Full text

PDF
354

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abelson J. N., Gefter M. L., Barnett L., Landy A., Russell R. L., Smith J. D. Mutant tyrosine transfer ribonucleic acids. J Mol Biol. 1970 Jan 14;47(1):15–28. doi: 10.1016/0022-2836(70)90398-0. [DOI] [PubMed] [Google Scholar]
  2. Adamiak R. W., Górnicki P. Hypermodified nucleosides of tRNA: synthesis, chemistry, and structural features of biological interest. Prog Nucleic Acid Res Mol Biol. 1985;32:27–74. doi: 10.1016/s0079-6603(08)60345-1. [DOI] [PubMed] [Google Scholar]
  3. Agris P. F., Söll D., Seno T. Biological function of 2-thiouridine in Escherichia coli glutamic acid transfer ribonucleic acid. Biochemistry. 1973 Oct 23;12(22):4331–4337. doi: 10.1021/bi00746a005. [DOI] [PubMed] [Google Scholar]
  4. Altman S. A modified uridine in the anticodon of E. coli tRNA I Tyr su + oc. Nucleic Acids Res. 1976 Feb;3(2):441–448. doi: 10.1093/nar/3.2.441. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Altman S., Brenner S., Smith J. D. Identification of an ochre-suppressing anticodon. J Mol Biol. 1971 Feb 28;56(1):195–197. doi: 10.1016/0022-2836(71)90094-5. [DOI] [PubMed] [Google Scholar]
  6. Andersson D. I., Bohman K., Isaksson L. A., Kurland C. G. Translation rates and misreading characteristics of rpsD mutants in Escherichia coli. Mol Gen Genet. 1982;187(3):467–472. doi: 10.1007/BF00332630. [DOI] [PubMed] [Google Scholar]
  7. Andersson D. I., Kurland C. G. Ram ribosomes are defective proofreaders. Mol Gen Genet. 1983;191(3):378–381. doi: 10.1007/BF00425749. [DOI] [PubMed] [Google Scholar]
  8. Arnardóttir A., Thorbjarnardóttir S., Eggertsson G. Mapping of the supP (Su6+) amber suppressor gene in Escherichia coli. J Bacteriol. 1980 Feb;141(2):977–978. doi: 10.1128/jb.141.2.977-978.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Atkins J. F., Ryce S. UGA and non-triplet suppressor reading of the genetic code. Nature. 1974 Jun 7;249(457):527–530. doi: 10.1038/249527a0. [DOI] [PubMed] [Google Scholar]
  10. Ayer D., Yarus M. The context effect does not require a fourth base pair. Science. 1986 Jan 24;231(4736):393–395. doi: 10.1126/science.3510456. [DOI] [PubMed] [Google Scholar]
  11. Bachmann B. J. Linkage map of Escherichia coli K-12, edition 7. Microbiol Rev. 1983 Jun;47(2):180–230. doi: 10.1128/mr.47.2.180-230.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bachmann B. J. Pedigrees of some mutant strains of Escherichia coli K-12. Bacteriol Rev. 1972 Dec;36(4):525–557. doi: 10.1128/br.36.4.525-557.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Biswas D. K., Gorini L. Restriction, de-restriction and mistranslation in missense suppression. Ribosomal discrimination of transfer RNA's. J Mol Biol. 1972 Feb 28;64(1):119–134. doi: 10.1016/0022-2836(72)90324-5. [DOI] [PubMed] [Google Scholar]
  14. Björk G. R., Kjellin-Stråby K. Escherichia coli mutants with defects in the biosynthesis of 5-methylaminomethyl-2-thio-uridine or 1-methylguanosine in their tRNA. J Bacteriol. 1978 Feb;133(2):508–517. doi: 10.1128/jb.133.2.508-517.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bohman K., Ruusala T., Jelenc P. C., Kurland C. G. Kinetic impairment of restrictive streptomycin-resistant ribosomes. Mol Gen Genet. 1984;198(2):90–99. doi: 10.1007/BF00328706. [DOI] [PubMed] [Google Scholar]
  16. Bollen A., Cabezón T., de Wilde M., Villarroel R., Herzog A. Alteration of ribosomal protein S17 by mutation linked to neamine resistance in Escherichia coli. I. General properties of neaA mutants. J Mol Biol. 1975 Dec 25;99(4):795–806. doi: 10.1016/s0022-2836(75)80185-9. [DOI] [PubMed] [Google Scholar]
  17. Bossi L. Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. J Mol Biol. 1983 Feb 15;164(1):73–87. doi: 10.1016/0022-2836(83)90088-8. [DOI] [PubMed] [Google Scholar]
  18. Bossi L., Ruth J. R. The influence of codon context on genetic code translation. Nature. 1980 Jul 10;286(5769):123–127. doi: 10.1038/286123a0. [DOI] [PubMed] [Google Scholar]
  19. Bouadloun F., Srichaiyo T., Isaksson L. A., Björk G. R. Influence of modification next to the anticodon in tRNA on codon context sensitivity of translational suppression and accuracy. J Bacteriol. 1986 Jun;166(3):1022–1027. doi: 10.1128/jb.166.3.1022-1027.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Bradley D., Park J. V., Soll L. TRNA2Gln Su+2 mutants that increase amber suppression. J Bacteriol. 1981 Feb;145(2):704–712. doi: 10.1128/jb.145.2.704-712.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Breeden L., Yarus M., Cline S. A cloned suppressor tRNA gene relaxes stringent control. Mol Gen Genet. 1980;179(1):125–133. doi: 10.1007/BF00268454. [DOI] [PubMed] [Google Scholar]
  22. Bruni C. B., Colantuoni V., Sbordone L., Cortese R., Blasi F. Biochemical and regulatory properties of Escherichia coli K-12 hisT mutants. J Bacteriol. 1977 Apr;130(1):4–10. doi: 10.1128/jb.130.1.4-10.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Buck M., Ames B. N. A modified nucleotide in tRNA as a possible regulator of aerobiosis: synthesis of cis-2-methyl-thioribosylzeatin in the tRNA of Salmonella. Cell. 1984 Feb;36(2):523–531. doi: 10.1016/0092-8674(84)90245-9. [DOI] [PubMed] [Google Scholar]
  24. Buck M., McCloskey J. A., Basile B., Ames B. N. cis 2-Methylthio-ribosylzeatin (ms2io6A) is present in the transfer RNA of Salmonella typhimurium, but not Escherichia coli. Nucleic Acids Res. 1982 Sep 25;10(18):5649–5662. doi: 10.1093/nar/10.18.5649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Buckel P., Buchberger A., Böck A., Wittmann H. G. Alteration of ribosomal protein L6 in mutants of Escherichia coli resistant to gentamicin. Mol Gen Genet. 1977 Dec 14;158(1):47–54. doi: 10.1007/BF00455118. [DOI] [PubMed] [Google Scholar]
  26. Buckingham R. H. Anticodon conformation and accessibility in wild-type and suppressor tryptophan tRNA from E. coli. Nucleic Acids Res. 1976 Apr;3(4):965–975. doi: 10.1093/nar/3.4.965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Buckingham R. H., Kurland C. G. Codon specificity of UGA suppressor tRNATrp from Escherichia coli. Proc Natl Acad Sci U S A. 1977 Dec;74(12):5496–5498. doi: 10.1073/pnas.74.12.5496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Cabezón T., Herzog A., De Wilde M., Villarroel R., Bollen A. Cooperative control of translational fidelity by ribosomal proteins in Escherichia coli. III. A ram mutation in the structural gene for protein S5 (rpx E). Mol Gen Genet. 1976 Feb 27;144(1):59–62. doi: 10.1007/BF00277305. [DOI] [PubMed] [Google Scholar]
  29. Carrier M. J., Buckingham R. H. An effect of codon context on the mistranslation of UGU codons in vitro. J Mol Biol. 1984 May 5;175(1):29–38. doi: 10.1016/0022-2836(84)90443-1. [DOI] [PubMed] [Google Scholar]
  30. Celis J. E., Coulondre C., Miller J. H. Suppressor su+7 inserts tryptophan in addition to glutamine. J Mol Biol. 1976 Jul 5;104(3):729–734. doi: 10.1016/0022-2836(76)90132-7. [DOI] [PubMed] [Google Scholar]
  31. Celis J. E., Piper P. W. Compilation of mutant suppressor tRNA sequences. Nucleic Acids Res. 1982 Jan 22;10(2):r83–r91. doi: 10.1093/nar/10.2.762-b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Colby D. S., Schedl P., Guthrie C. A functional requirement for modification of the wobble nucleotide in tha anticodon of a T4 suppressor tRNA. Cell. 1976 Nov;9(3):449–463. doi: 10.1016/0092-8674(76)90090-8. [DOI] [PubMed] [Google Scholar]
  33. Comer M. M., Foss K., McClain W. H. A mutation of the wobble nucleotide of a bacteriophage T4 transfer RNA. J Mol Biol. 1975 Dec 5;99(2):283–293. doi: 10.1016/s0022-2836(75)80146-x. [DOI] [PubMed] [Google Scholar]
  34. Comer M. M., Guthrie C., McClain W. H. An ochre suppressor of bacteriophage T4 that is associated with a transfer RNA. J Mol Biol. 1974 Dec 25;90(4):665–676. doi: 10.1016/0022-2836(74)90531-2. [DOI] [PubMed] [Google Scholar]
  35. Cortese R., Kammen H. O., Spengler S. J., Ames B. N. Biosynthesis of pseudouridine in transfer ribonucleic acid. J Biol Chem. 1974 Feb 25;249(4):1103–1108. [PubMed] [Google Scholar]
  36. Craigen W. J., Caskey C. T. Expression of peptide chain release factor 2 requires high-efficiency frameshift. Nature. 1986 Jul 17;322(6076):273–275. doi: 10.1038/322273a0. [DOI] [PubMed] [Google Scholar]
  37. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  38. Curran J. F., Yarus M. Base substitutions in the tRNA anticodon arm do not degrade the accuracy of reading frame maintenance. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6538–6542. doi: 10.1073/pnas.83.17.6538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Davidoff-Abelson R., Mindich L. A mutation that increases the activity of nonsense suppressors in Escherichia coli. Mol Gen Genet. 1978 Feb 16;159(2):161–169. doi: 10.1007/BF00270889. [DOI] [PubMed] [Google Scholar]
  40. Davies J., Jones D. S., Khorana H. G. A further study of misreading of codons induced by streptomycin and neomycin using ribopolynucleotides containing two nucleotides in alternating sequence as templates. J Mol Biol. 1966 Jun;18(1):48–57. doi: 10.1016/s0022-2836(66)80075-x. [DOI] [PubMed] [Google Scholar]
  41. Dayhuff T. J., Atkins J. F., Gesteland R. F. Characterization of ribosomal frameshift events by protein sequence analysis. J Biol Chem. 1986 Jun 5;261(16):7491–7500. [PubMed] [Google Scholar]
  42. Delamarche C., Buckingham R. H. Does UGA suppressor tRNATrp from Escherichia coli have a unique CCA anticodon sequence? Eur J Biochem. 1985 Apr 15;148(2):271–275. doi: 10.1111/j.1432-1033.1985.tb08835.x. [DOI] [PubMed] [Google Scholar]
  43. Demerec M., Adelberg E. A., Clark A. J., Hartman P. E. A proposal for a uniform nomenclature in bacterial genetics. Genetics. 1966 Jul;54(1):61–76. doi: 10.1093/genetics/54.1.61. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Deutscher M. P. Processing of tRNA in prokaryotes and eukaryotes. CRC Crit Rev Biochem. 1984;17(1):45–71. doi: 10.3109/10409238409110269. [DOI] [PubMed] [Google Scholar]
  45. Diaz I., Ehrenberg M., Kurland C. G. How do combinations of rpsL- and miaA- generate streptomycin dependence? Mol Gen Genet. 1986 Feb;202(2):207–211. doi: 10.1007/BF00331638. [DOI] [PubMed] [Google Scholar]
  46. Eggertsson G., Adelberg E. A. Map positions and specificities of suppressor mutations in Escherichia coli K-12. Genetics. 1965 Aug;52(2):319–340. doi: 10.1093/genetics/52.2.319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. Eggertsson G. Mapping of ochre suppressors in Escherichia coli. Genet Res. 1968 Feb;11(1):15–20. doi: 10.1017/s0016672300011150. [DOI] [PubMed] [Google Scholar]
  48. Eggertsson G. Suppressors causing temperature sensitivity of growth in Escherichia coli. Genetics. 1968 Oct;60(2):269–280. doi: 10.1093/genetics/60.2.269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Eisenberg S. P., Soll L., Yarus M. The purification and sequence of a temperature-sensitive tryptophan tRNA. J Biol Chem. 1979 Jun 25;254(12):5562–5566. [PubMed] [Google Scholar]
  50. Eisenberg S. P., Yarus M., Soll L. The effect of an Escherichia coli regulatory mutation on transfer RNA structure. J Mol Biol. 1979 Nov 25;135(1):111–126. doi: 10.1016/0022-2836(79)90343-7. [DOI] [PubMed] [Google Scholar]
  51. Eisenberg S. P., Yarus M. The structure and aminoacylation of a temperature-sensitive tRNATrp (Escherichia coli). J Biol Chem. 1980 Feb 10;255(3):1128–1137. [PubMed] [Google Scholar]
  52. Engelberg-Kulka H., Dekel L., Israeli-Reches M., Belfort M. The requirement of nonsense suppression for the development of several phages. Mol Gen Genet. 1979 Feb 26;170(2):155–159. doi: 10.1007/BF00337791. [DOI] [PubMed] [Google Scholar]
  53. Engelberg-Kulka H. UGA suppression by normal tRNA Trp in Escherichia coli: codon context effects. Nucleic Acids Res. 1981 Feb 25;9(4):983–991. doi: 10.1093/nar/9.4.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Ericson J. U., Björk G. R. Pleiotropic effects induced by modification deficiency next to the anticodon of tRNA from Salmonella typhimurium LT2. J Bacteriol. 1986 Jun;166(3):1013–1021. doi: 10.1128/jb.166.3.1013-1021.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Feinstein S. I., Altman S. Coding properties of an ochre-suppressing derivative of Escherichia coli tRNAITyr. J Mol Biol. 1977 May 25;112(3):453–470. doi: 10.1016/s0022-2836(77)80192-7. [DOI] [PubMed] [Google Scholar]
  56. Feinstein S. I., Altman S. Context effects on nonsense codon suppression in Escherichia coli. Genetics. 1978 Feb;88(2):201–219. doi: 10.1093/genetics/88.2.201. [DOI] [PMC free article] [PubMed] [Google Scholar]
  57. Foss K., Kao S., McClain W. H. Three suppressor forms of bacteriophage T4 leucine transfer RNA. J Mol Biol. 1979 Dec 25;135(4):1013–1021. doi: 10.1016/0022-2836(79)90525-4. [DOI] [PubMed] [Google Scholar]
  58. Fournier M. J., Ozeki H. Structure and organization of the transfer ribonucleic acid genes of Escherichia coli K-12. Microbiol Rev. 1985 Dec;49(4):379–397. doi: 10.1128/mr.49.4.379-397.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Fukada K., Abelson J. DNA sequence of a T4 transfer RNA gene cluster. J Mol Biol. 1980 May 25;139(3):377–391. doi: 10.1016/0022-2836(80)90136-9. [DOI] [PubMed] [Google Scholar]
  60. Furdon P. J., Guerrier-Takada C., Altman S. A G43 to U43 mutation in E. coli tRNAtyrsu3+ which affects processing by RNase P. Nucleic Acids Res. 1983 Mar 11;11(5):1491–1505. doi: 10.1093/nar/11.5.1491. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. Furdon P., Altman S. Novel non-suppressing mutants of Escherichia coli tRNATyr su+3. Nucleic Acids Res. 1985 Apr 11;13(7):2583–2601. doi: 10.1093/nar/13.7.2583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Gallagher P. J., Schwartz I., Elseviers D. Genetic mapping of pheU, an Escherichia coli gene for phenylalanine tRNA. J Bacteriol. 1984 May;158(2):762–763. doi: 10.1128/jb.158.2.762-763.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. Gallant J. A. Stringent control in E. coli. Annu Rev Genet. 1979;13:393–415. doi: 10.1146/annurev.ge.13.120179.002141. [DOI] [PubMed] [Google Scholar]
  64. Gallant J., Erlich H., Weiss R., Palmer L., Nyari L. Nonsense suppression in aminoacyl-t-RNA limited cells. Mol Gen Genet. 1982;186(2):221–227. doi: 10.1007/BF00331853. [DOI] [PubMed] [Google Scholar]
  65. Gallucci E., Garen A. Suppressor genes for nonsense mutations. II. The su-4 and su-5 suppressor genes of Escherichia coli. J Mol Biol. 1966 Jan;15(1):193–200. doi: 10.1016/s0022-2836(66)80220-6. [DOI] [PubMed] [Google Scholar]
  66. Gallucci E., Pacchetti G., Zangrossi S. Genetic studies on temperature sensitive nonsense suppression. Mol Gen Genet. 1970;106(4):362–370. doi: 10.1007/BF00324053. [DOI] [PubMed] [Google Scholar]
  67. Ganoza M. C., Tomkins J. K. Polypeptide chain termination in vitro: competition for nonsense codons between a purified release factor and suppressor tRNA. Biochem Biophys Res Commun. 1970 Sep 30;40(6):1455–1463. doi: 10.1016/0006-291x(70)90031-8. [DOI] [PubMed] [Google Scholar]
  68. Gefter M. L., Russell R. L. Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol. 1969 Jan 14;39(1):145–157. doi: 10.1016/0022-2836(69)90339-8. [DOI] [PubMed] [Google Scholar]
  69. Goodman H. M., Abelson J., Landy A., Brenner S., Smith J. D. Amber suppression: a nucleotide change in the anticodon of a tyrosine transfer RNA. Nature. 1968 Mar 16;217(5133):1019–1024. doi: 10.1038/2171019a0. [DOI] [PubMed] [Google Scholar]
  70. Gorini L., Beckwith J. R. Suppression. Annu Rev Microbiol. 1966;20:401–422. doi: 10.1146/annurev.mi.20.100166.002153. [DOI] [PubMed] [Google Scholar]
  71. Gorini L. Informational suppression. Annu Rev Genet. 1970;4:107–134. doi: 10.1146/annurev.ge.04.120170.000543. [DOI] [PubMed] [Google Scholar]
  72. Gorini L. Ribosomal discrimination of tRNAs. Nat New Biol. 1971 Dec 29;234(52):261–264. doi: 10.1038/newbio234261a0. [DOI] [PubMed] [Google Scholar]
  73. Grosjean H., Nicoghosian K., Haumont E., Söll D., Cedergren R. Nucleotide sequences of two serine tRNAs with a GGA anticodon: the structure-function relationships in the serine family of E. coli tRNAs. Nucleic Acids Res. 1985 Aug 12;13(15):5697–5706. doi: 10.1093/nar/13.15.5697. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Grosjean H., Söll D. G., Crothers D. M. Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. J Mol Biol. 1976 May 25;103(3):499–519. doi: 10.1016/0022-2836(76)90214-x. [DOI] [PubMed] [Google Scholar]
  75. Hagervall T. G., Björk G. R. Genetic mapping and cloning of the gene (trmC) responsible for the synthesis of tRNA (mnm5s2U)methyltransferase in Escherichia coli K12. Mol Gen Genet. 1984;196(2):201–207. doi: 10.1007/BF00328051. [DOI] [PubMed] [Google Scholar]
  76. Hagervall T. G., Björk G. R. Undermodification in the first position of the anticodon of supG-tRNA reduces translational efficiency. Mol Gen Genet. 1984;196(2):194–200. doi: 10.1007/BF00328050. [DOI] [PubMed] [Google Scholar]
  77. Hartman P. E., Roth J. R. Mechanisms of suppression. Adv Genet. 1973;17:1–105. doi: 10.1016/s0065-2660(08)60170-4. [DOI] [PubMed] [Google Scholar]
  78. Heyer W. D., Munz P., Amstutz H., Aebi R., Gysler C., Schuchert P., Szankasi P., Leupold U., Kohli J., Gamulin V. Inactivation of nonsense suppressor transfer RNA genes in Schizosaccharomyces pombe. Intergenic conversion and hot spots of mutation. J Mol Biol. 1986 Apr 5;188(3):343–353. doi: 10.1016/0022-2836(86)90159-2. [DOI] [PubMed] [Google Scholar]
  79. Hirsh D., Gold L. Translation of the UGA triplet in vitro by tryptophan transfer RNA's. J Mol Biol. 1971 Jun 14;58(2):459–468. doi: 10.1016/0022-2836(71)90363-9. [DOI] [PubMed] [Google Scholar]
  80. Hirsh D. Tryptophan transfer RNA as the UGA suppressor. J Mol Biol. 1971 Jun 14;58(2):439–458. doi: 10.1016/0022-2836(71)90362-7. [DOI] [PubMed] [Google Scholar]
  81. Hummel H., Piepersberg W., Böck A. 30S subunit mutations relieving restriction of ribosomal misreading caused by L6 mutations. Mol Gen Genet. 1980;179(1):147–153. doi: 10.1007/BF00268457. [DOI] [PubMed] [Google Scholar]
  82. Högenauer G. Binding of UGA to wild type and suppressor tryptophan tRNA from E. coli. FEBS Lett. 1974 Mar 1;39(3):310–312. doi: 10.1016/0014-5793(74)80137-7. [DOI] [PubMed] [Google Scholar]
  83. Ikemura T. Codon usage and tRNA content in unicellular and multicellular organisms. Mol Biol Evol. 1985 Jan;2(1):13–34. doi: 10.1093/oxfordjournals.molbev.a040335. [DOI] [PubMed] [Google Scholar]
  84. Inokuchi H., Hoben P., Yamao F., Ozeki H., Söll D. Transfer RNA mischarging mediated by a mutant Escherichia coli glutaminyl-tRNA synthetase. Proc Natl Acad Sci U S A. 1984 Aug;81(16):5076–5080. doi: 10.1073/pnas.81.16.5076. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Inokuchi H., Kodaira M., Yamao F., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. II. Duplicate genes for tRNA2Gln. J Mol Biol. 1979 Aug 25;132(4):663–677. doi: 10.1016/0022-2836(79)90381-4. [DOI] [PubMed] [Google Scholar]
  86. Inokuchi H., Yamao F., Sakano H., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. I. Amber suppressor su+2, an anticodon mutant of tRNA2Gln. J Mol Biol. 1979 Aug 25;132(4):649–662. doi: 10.1016/0022-2836(79)90380-2. [DOI] [PubMed] [Google Scholar]
  87. Jelenc P. C., Kurland C. G. Multiple effects of kanamycin on translational accuracy. Mol Gen Genet. 1984;194(1-2):195–199. doi: 10.1007/BF00383516. [DOI] [PubMed] [Google Scholar]
  88. Johnston H. M., Barnes W. M., Chumley F. G., Bossi L., Roth J. R. Model for regulation of the histidine operon of Salmonella. Proc Natl Acad Sci U S A. 1980 Jan;77(1):508–512. doi: 10.1073/pnas.77.1.508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. Johnston H. M., Roth J. R. UGA suppressor that maps within a cluster of ribosomal protein genes. J Bacteriol. 1980 Oct;144(1):300–305. doi: 10.1128/jb.144.1.300-305.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. Johnston T. C., Parker J. Streptomycin-induced, third-position misreading of the genetic code. J Mol Biol. 1985 Jan 20;181(2):313–315. doi: 10.1016/0022-2836(85)90094-4. [DOI] [PubMed] [Google Scholar]
  91. Kao S. H., McClain W. H. U-G-A suppressor of bacteriophage T4 associated with arginine transfer RNA. J Biol Chem. 1977 Nov 25;252(22):8254–8257. [PubMed] [Google Scholar]
  92. Kato T., Shinoura Y., Templin A., Clark A. J. Analysis of ultraviolet light-induced suppressor mutations in the strain of Escherichia coli K-12 AB1157: an implication for molecular mechanisms of UV mutagenesis. Mol Gen Genet. 1980;180(2):283–291. doi: 10.1007/BF00425840. [DOI] [PubMed] [Google Scholar]
  93. Kersten H. On the biological significance of modified nucleosides in tRNA. Prog Nucleic Acid Res Mol Biol. 1984;31:59–114. doi: 10.1016/s0079-6603(08)60375-x. [DOI] [PubMed] [Google Scholar]
  94. King T. C., Sirdeskmukh R., Schlessinger D. Nucleolytic processing of ribonucleic acid transcripts in procaryotes. Microbiol Rev. 1986 Dec;50(4):428–451. doi: 10.1128/mr.50.4.428-451.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  95. Kirsebom L. A., Amons R., Isaksson L. A. Primary structures of mutationally altered ribosomal protein L7/L12 and their effects on cellular growth and translational accuracy. Eur J Biochem. 1986 May 2;156(3):669–675. doi: 10.1111/j.1432-1033.1986.tb09630.x. [DOI] [PubMed] [Google Scholar]
  96. Kirsebom L. A., Isaksson L. A. Functional interactions in vivo between suppressor tRNA and mutationally altered ribosomal protein S4. Mol Gen Genet. 1986 Nov;205(2):240–247. doi: 10.1007/BF00430434. [DOI] [PubMed] [Google Scholar]
  97. Kirsebom L. A., Isaksson L. A. Involvement of ribosomal protein L7/L12 in control of translational accuracy. Proc Natl Acad Sci U S A. 1985 Feb;82(3):717–721. doi: 10.1073/pnas.82.3.717. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Knowlton R. G., Soll L., Yarus M. Dual specificity of su+ 7 tRNA. Evidence for translational discrimination. J Mol Biol. 1980 Jun 5;139(4):705–720. doi: 10.1016/0022-2836(80)90056-x. [DOI] [PubMed] [Google Scholar]
  99. Knowlton R. G., Yarus M. Discrimination between aminoacyl groups on su+ 7 tRNA by elongation factor Tu. J Mol Biol. 1980 Jun 5;139(4):721–732. doi: 10.1016/0022-2836(80)90057-1. [DOI] [PubMed] [Google Scholar]
  100. Kohli J., Grosjean H. Usage of the three termination codons: compilation and analysis of the known eukaryotic and prokaryotic translation termination sequences. Mol Gen Genet. 1981;182(3):430–439. doi: 10.1007/BF00293932. [DOI] [PubMed] [Google Scholar]
  101. Kurland C. G., Ehrenberg M. Optimization of translation accuracy. Prog Nucleic Acid Res Mol Biol. 1984;31:191–219. doi: 10.1016/s0079-6603(08)60378-5. [DOI] [PubMed] [Google Scholar]
  102. Kühberger R., Piepersberg W., Petzet A., Buckel P., Böck A. Alteration of ribosomal protein L6 in gentamicin-resistant strains of Escherichia coli. Effects on fidelity of protein synthesis. Biochemistry. 1979 Jan 9;18(1):187–193. doi: 10.1021/bi00568a028. [DOI] [PubMed] [Google Scholar]
  103. Lawther R. P., Hatfield W. Biochemical characterization of an Escherichia coli hisT strain. J Bacteriol. 1977 Apr;130(1):552–557. doi: 10.1128/jb.130.1.552-557.1977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  104. Marinus M. G., Morris N. R., Söll D., Kwong T. C. Isolation and partial characterization of three Escherichia coli mutants with altered transfer ribonucleic acid methylases. J Bacteriol. 1975 Apr;122(1):257–265. doi: 10.1128/jb.122.1.257-265.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  105. Marshall B., Levy S. B. Prevalence of amber suppressor-containing coliforms in the natural environment. Nature. 1980 Jul 31;286(5772):524–525. doi: 10.1038/286524a0. [DOI] [PubMed] [Google Scholar]
  106. Marvel C. C., Arps P. J., Rubin B. C., Kammen H. O., Penhoet E. E., Winkler M. E. hisT is part of a multigene operon in Escherichia coli K-12. J Bacteriol. 1985 Jan;161(1):60–71. doi: 10.1128/jb.161.1.60-71.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Mazzara G. P., Plunkett G., 3rd, McClain W. H. DNA sequence of the transfer RNA region of bacteriophage T4: implications for transfer RNA synthesis. Proc Natl Acad Sci U S A. 1981 Feb;78(2):889–892. doi: 10.1073/pnas.78.2.889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. McClain W. H., Foss K. Hybrid transfer RNA genes in phage T4. Cell. 1984 Aug;38(1):225–231. doi: 10.1016/0092-8674(84)90544-0. [DOI] [PubMed] [Google Scholar]
  109. McClain W. H., Foss K., Schneider J., Guerrier-Takada C., Altman S. Suppressor and novel mutants of bacteriophage T4 tRNA(Gly). J Mol Biol. 1987 Jan 5;193(1):223–226. doi: 10.1016/0022-2836(87)90640-1. [DOI] [PubMed] [Google Scholar]
  110. McClain W. H., Guthrie C., Barrell B. G. Eight transfer RNAs induced by infection of Escherichia coli with bacteriophage T4. Proc Natl Acad Sci U S A. 1972 Dec;69(12):3703–3707. doi: 10.1073/pnas.69.12.3703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. McClain W. H., Guthrie C., Barrell B. G. The psu1+ amber suppressor gene of bacteriophage T4: identification of its amino acid and transfer RNA. J Mol Biol. 1973 Dec 5;81(2):157–171. doi: 10.1016/0022-2836(73)90186-1. [DOI] [PubMed] [Google Scholar]
  112. Menninger J. R., Walker C., Tan P. F. Studies on the metabolic role of peptidyl-tRNA hydrolase. I. Properties of a mutant E. coli with temperature-sensitive peptidyl-tRNA hydrolase. Mol Gen Genet. 1973 Mar 19;121(4):307–324. doi: 10.1007/BF00433230. [DOI] [PubMed] [Google Scholar]
  113. Miller C. G., Roth J. R. Recessive-lethal nonsense suppressors in Salmonella typhimurium. J Mol Biol. 1971 Jul 14;59(1):63–75. doi: 10.1016/0022-2836(71)90413-x. [DOI] [PubMed] [Google Scholar]
  114. Miller J. H., Albertini A. M. Effects of surrounding sequence on the suppression of nonsense codons. J Mol Biol. 1983 Feb 15;164(1):59–71. doi: 10.1016/0022-2836(83)90087-6. [DOI] [PubMed] [Google Scholar]
  115. Murgola E. J., Childress J. R. Suppressors of a UGG missense mutation in Escherichia coli. J Bacteriol. 1980 Jul;143(1):285–292. doi: 10.1128/jb.143.1.285-292.1980. [DOI] [PMC free article] [PubMed] [Google Scholar]
  116. Murgola E. J., Pagel F. T. Codon recognition by glycine transfer RNAs of Escherichia coli in vivo. J Mol Biol. 1980 Apr 25;138(4):833–844. doi: 10.1016/0022-2836(80)90067-4. [DOI] [PubMed] [Google Scholar]
  117. Murgola E. J., Pagel F. T., Hijazi K. A. Codon context effects in missense suppression. J Mol Biol. 1984 May 5;175(1):19–27. doi: 10.1016/0022-2836(84)90442-x. [DOI] [PubMed] [Google Scholar]
  118. Murgola E. J., Prather N. E., Hadley K. H. Variations among glyV-derived glycine tRNA suppressors of glutamic acid codons. J Bacteriol. 1978 Jun;134(3):801–807. doi: 10.1128/jb.134.3.801-807.1978. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Murgola E. J., Prather N. E., Mims B. H., Pagel F. T., Hijazi K. A. Anticodon shift in tRNA: a novel mechanism in missense and nonsense suppression. Proc Natl Acad Sci U S A. 1983 Aug;80(16):4936–4939. doi: 10.1073/pnas.80.16.4936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Murgola E. J., Prather N. E., Pagel F. T., Mims B. H., Hijazi K. A. Missense and nonsense suppressors derived from a glycine tRNA by nucleotide insertion and deletion in vivo. Mol Gen Genet. 1984;193(1):76–81. doi: 10.1007/BF00327417. [DOI] [PubMed] [Google Scholar]
  121. Murgola E. J. Restricted wobble in UGA codon recognition by glycine tRNA suppressors of UGG. J Mol Biol. 1981 Jun 15;149(1):1–13. doi: 10.1016/0022-2836(81)90257-6. [DOI] [PubMed] [Google Scholar]
  122. Murgola E. J. tRNA, suppression, and the code. Annu Rev Genet. 1985;19:57–80. doi: 10.1146/annurev.ge.19.120185.000421. [DOI] [PubMed] [Google Scholar]
  123. Nagata T., Horiuchi T. Isolation and characterization of a temperature-sensitive amber suppressor mutant of Escherichia coli K12. Mol Gen Genet. 1973;123(1):77–88. doi: 10.1007/BF00282991. [DOI] [PubMed] [Google Scholar]
  124. Normanly J., Masson J. M., Kleina L. G., Abelson J., Miller J. H. Construction of two Escherichia coli amber suppressor genes: tRNAPheCUA and tRNACysCUA. Proc Natl Acad Sci U S A. 1986 Sep;83(17):6548–6552. doi: 10.1073/pnas.83.17.6548. [DOI] [PMC free article] [PubMed] [Google Scholar]
  125. Normanly J., Ogden R. C., Horvath S. J., Abelson J. Changing the identity of a transfer RNA. Nature. 1986 May 15;321(6067):213–219. doi: 10.1038/321213a0. [DOI] [PubMed] [Google Scholar]
  126. Oeschger M. P., Oeschger N. S., Wiprud G. T., Woods S. L. High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12: isolation of strains with suppressor-enhancing mutations. Mol Gen Genet. 1980;177(4):545–552. doi: 10.1007/BF00272662. [DOI] [PubMed] [Google Scholar]
  127. Oeschger M. P., Wiprud G. T. High efficiency temperature-sensitive amber suppressor strains of Escherichia coli K12: construction and characterization of recombinant strains with suppressor-enhancing mutations. Mol Gen Genet. 1980;178(2):293–299. doi: 10.1007/BF00270475. [DOI] [PubMed] [Google Scholar]
  128. Oeschger M. P., Woods S. L. A temperature-sensitive suppressor enabling the manipulation of the level of individual proteins in intact cells. Cell. 1976 Feb;7(2):205–212. doi: 10.1016/0092-8674(76)90019-2. [DOI] [PubMed] [Google Scholar]
  129. Ohlsson B. M., Strigini P. F., Beckwith J. R. Allelic amber and ochre suppressors. J Mol Biol. 1968 Sep 14;36(2):209–218. doi: 10.1016/0022-2836(68)90376-8. [DOI] [PubMed] [Google Scholar]
  130. Olsson M. O., Isaksson L. A. Analysis of rpsD mutations in Escherichia coli. I. Comparison of mutants with various alterations in ribosomal protein S4. Mol Gen Genet. 1979 Feb 1;169(3):251–257. doi: 10.1007/BF00382271. [DOI] [PubMed] [Google Scholar]
  131. Orias E., Gartner T. K., Lannan J. E., Betlach M. Close linkage between ochre and missense suppressors in Escherichia coli. J Bacteriol. 1972 Mar;109(3):1125–1133. doi: 10.1128/jb.109.3.1125-1133.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  132. Ozeki H., Sakano H., Yamada S., Ikemura T., Shimura Y. Temperature-sensitive mutants of Escherichia coli defective in tRNA biosynthesis. Brookhaven Symp Biol. 1975 Jul;(26):89–105. [PubMed] [Google Scholar]
  133. Palmer D. T., Blum P. H., Artz S. W. Effects of the hisT mutation of Salmonella typhimurium on translation elongation rate. J Bacteriol. 1983 Jan;153(1):357–363. doi: 10.1128/jb.153.1.357-363.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  134. Person S., Osborn M. The conversion of amber suppressors to ochre suppressors. Proc Natl Acad Sci U S A. 1968 Jul;60(3):1030–1037. doi: 10.1073/pnas.60.3.1030. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. Petrullo L. A., Gallagher P. J., Elseviers D. The role of 2-methylthio-N6-isopentenyladenosine in readthrough and suppression of nonsense codons in Escherichia coli. Mol Gen Genet. 1983;190(2):289–294. doi: 10.1007/BF00330653. [DOI] [PubMed] [Google Scholar]
  136. Piepersberg W., Böck A., Wittmann H. G. Effect of different mutations in ribosomal protein S5 of Escherichia coli on translational fidelity. Mol Gen Genet. 1975 Sep 29;140(2):91–100. doi: 10.1007/BF00329777. [DOI] [PubMed] [Google Scholar]
  137. Piepersberg W., Noseda V., Böck A. Bacterial ribosomes with two ambiguity mutations: effects of translational fidelity, on the response to aminoglycosides and on the rate of protein synthesis. Mol Gen Genet. 1979 Mar 9;171(1):23–34. doi: 10.1007/BF00274011. [DOI] [PubMed] [Google Scholar]
  138. Pinkerton T. C., Paddock G., Abelson J. Nucleotide sequence determination of bacteriophage T4 leucine transfer ribonucleic acid. J Biol Chem. 1973 Sep 25;248(18):6348–6365. [PubMed] [Google Scholar]
  139. Pope W. T., Brown A., Reeves R. H. The identification of the tRNA substrates for the supK tRNA methylase. Nucleic Acids Res. 1978 Mar;5(3):1041–1057. doi: 10.1093/nar/5.3.1041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  140. Prather N. E., Mims B. H., Murgola E. J. supG and supL in Escherichia coli code for mutant lysine tRNAs+. Nucleic Acids Res. 1983 Dec 10;11(23):8283–8286. doi: 10.1093/nar/11.23.8283. [DOI] [PMC free article] [PubMed] [Google Scholar]
  141. Prather N. E., Murgola E. J., Mims B. H. Primary structure of an unusual glycine tRNA UGA suppressor. Nucleic Acids Res. 1981 Dec 11;9(23):6421–6428. doi: 10.1093/nar/9.23.6421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  142. Raftery L. A., Bermingham J. R., Jr, Yarus M. Mutation in the D arm enables a suppressor with a CUA anticodon to read both amber and ochre codons in Escherichia coli. J Mol Biol. 1986 Aug 5;190(3):513–517. doi: 10.1016/0022-2836(86)90020-3. [DOI] [PubMed] [Google Scholar]
  143. Raftery L. A., Egan J. B., Cline S. W., Yarus M. Defined set of cloned termination suppressors: in vivo activity of isogenetic UAG, UAA, and UGA suppressor tRNAs. J Bacteriol. 1984 Jun;158(3):849–859. doi: 10.1128/jb.158.3.849-859.1984. [DOI] [PMC free article] [PubMed] [Google Scholar]
  144. Raftery L. A., Yarus M. Site-specific mutagenesis of Escherichia coli gltT yields a weak, glutamic acid-inserting ochre suppressor. J Mol Biol. 1985 Jul 20;184(2):343–345. doi: 10.1016/0022-2836(85)90385-7. [DOI] [PubMed] [Google Scholar]
  145. Raftery L. A., Yarus M. Systematic alterations in the anticodon arm make tRNA(Glu)-Suoc a more efficient suppressor. EMBO J. 1987 May;6(5):1499–1506. doi: 10.1002/j.1460-2075.1987.tb02392.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  146. Reeves R. H., Roth J. R. A recessive UGA suppressor. J Mol Biol. 1971 Mar 28;56(3):523–533. doi: 10.1016/0022-2836(71)90399-8. [DOI] [PubMed] [Google Scholar]
  147. Reeves R. H., Roth J. R. Transfer ribonucleic acid methylase deficiency found in UGA supressor strains. J Bacteriol. 1975 Oct;124(1):332–340. doi: 10.1128/jb.124.1.332-340.1975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  148. Rich A., RajBhandary U. L. Transfer RNA: molecular structure, sequence, and properties. Annu Rev Biochem. 1976;45:805–860. doi: 10.1146/annurev.bi.45.070176.004105. [DOI] [PubMed] [Google Scholar]
  149. Robeson J. P., Goldschmidt R. M., Curtiss R., 3rd Potential of Escherichia coli isolated from nature to propagate cloning vectors. Nature. 1980 Jan 3;283(5742):104–106. doi: 10.1038/283104a0. [DOI] [PubMed] [Google Scholar]
  150. Roth J. R., Antón D. N., Hartman P. E. Histidine regulatory mutants in Salmonella typhimurium. I. Isolation and general properties. J Mol Biol. 1966 Dec 28;22(2):305–323. doi: 10.1016/0022-2836(66)90134-3. [DOI] [PubMed] [Google Scholar]
  151. Roth J. R. Frameshift mutations. Annu Rev Genet. 1974;8:319–346. doi: 10.1146/annurev.ge.08.120174.001535. [DOI] [PubMed] [Google Scholar]
  152. Roth J. R. Frameshift suppression. Cell. 1981 Jun;24(3):601–602. doi: 10.1016/0092-8674(81)90086-6. [DOI] [PubMed] [Google Scholar]
  153. Ruusala T., Andersson D., Ehrenberg M., Kurland C. G. Hyper-accurate ribosomes inhibit growth. EMBO J. 1984 Nov;3(11):2575–2580. doi: 10.1002/j.1460-2075.1984.tb02176.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  154. Ruusala T., Kurland C. G. Streptomycin preferentially perturbs ribosomal proofreading. Mol Gen Genet. 1984;198(2):100–104. doi: 10.1007/BF00328707. [DOI] [PubMed] [Google Scholar]
  155. Ryden M., Murphy J., Martin R., Isaksson L., Gallant J. Mapping and complementation studies of the gene for release factor 1. J Bacteriol. 1986 Dec;168(3):1066–1069. doi: 10.1128/jb.168.3.1066-1069.1986. [DOI] [PMC free article] [PubMed] [Google Scholar]
  156. Rydén S. M., Isaksson L. A. A temperature-sensitive mutant of Escherichia coli that shows enhanced misreading of UAG/A and increased efficiency for some tRNA nonsense suppressors. Mol Gen Genet. 1984;193(1):38–45. doi: 10.1007/BF00327411. [DOI] [PubMed] [Google Scholar]
  157. Sakano H., Yamada S., Ikemura T., Shimura Y., Ozeki H. Temperature sensitive mutants of Escherichia coli for tRNA synthesis. Nucleic Acids Res. 1974 Mar;1(3):355–371. doi: 10.1093/nar/1.3.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  158. Salser W. The influence of the reading context upon the suppression of nonsense codons. Mol Gen Genet. 1969 Oct 13;105(2):125–130. doi: 10.1007/BF00445682. [DOI] [PubMed] [Google Scholar]
  159. Sanderson K. E., Roth J. R. Linkage map of Salmonella typhimurium, Edition VI. Microbiol Rev. 1983 Sep;47(3):410–453. doi: 10.1128/mr.47.3.410-453.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  160. Schedl P., Primakoff P. Mutants of Escherichia coli thermosensitive for the synthesis of transfer RNA. Proc Natl Acad Sci U S A. 1973 Jul;70(7):2091–2095. doi: 10.1073/pnas.70.7.2091. [DOI] [PMC free article] [PubMed] [Google Scholar]
  161. Seidman J. G., Comer M. M., McClain W. H. Nucleotide alterations in the bacteriophage T4 glutamine transfer RNA that affect ochre suppressor activity. J Mol Biol. 1974 Dec 25;90(4):677–689. doi: 10.1016/0022-2836(74)90532-4. [DOI] [PubMed] [Google Scholar]
  162. Shimura Y., Ozeki H. Genetic study on transfer RNA. Adv Biophys. 1973;4:191–226. [PubMed] [Google Scholar]
  163. Shpaer E. G. Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. J Mol Biol. 1986 Apr 20;188(4):555–564. doi: 10.1016/s0022-2836(86)80005-5. [DOI] [PubMed] [Google Scholar]
  164. Singer C. E., Smith G. R., Cortese R., Ames B. N. [Mutant tRNA His ineffective in repression and lacking two pseudouridine modifications]. Nat New Biol. 1972 Jul 19;238(81):72–74. doi: 10.1038/newbio238072a0. [DOI] [PubMed] [Google Scholar]
  165. Smith J. D., Barnett L., Brenner S., Russell R. L. More mutant tyrosine transfer ribonucleic acids. J Mol Biol. 1970 Nov 28;54(1):1–14. doi: 10.1016/0022-2836(70)90442-0. [DOI] [PubMed] [Google Scholar]
  166. Smith J. D. Gentics of transfer RNA. Annu Rev Genet. 1972;6:235–256. doi: 10.1146/annurev.ge.06.120172.001315. [DOI] [PubMed] [Google Scholar]
  167. Smith J. D. Transcription and processing of transfer RNA precursors. Prog Nucleic Acid Res Mol Biol. 1976;16:25–73. doi: 10.1016/s0079-6603(08)60755-2. [DOI] [PubMed] [Google Scholar]
  168. Smith M. In vitro mutagenesis. Annu Rev Genet. 1985;19:423–462. doi: 10.1146/annurev.ge.19.120185.002231. [DOI] [PubMed] [Google Scholar]
  169. Soll L., Berg P. Recessive lethal nonsense suppressor in Escherichia coli which inserts glutamine. Nature. 1969 Sep 27;223(5213):1340–1342. doi: 10.1038/2231340a0. [DOI] [PubMed] [Google Scholar]
  170. Soll L., Berg P. Recessive lethals: a new class of nonsense suppressors in Escherichia coli. Proc Natl Acad Sci U S A. 1969 Jun;63(2):392–399. doi: 10.1073/pnas.63.2.392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  171. Soll L. Mutational alterations of tryptophan-specific transfer RNA that generate translation suppressors of the UAA, UAG and UGA nonsense codons. J Mol Biol. 1974 Jun 25;86(2):233–243. doi: 10.1016/0022-2836(74)90015-1. [DOI] [PubMed] [Google Scholar]
  172. Sprinzl M., Hartmann T., Meissner F., Moll J., Vorderwülbecke T. Compilation of tRNA sequences and sequences of tRNA genes. Nucleic Acids Res. 1987;15 (Suppl):r53–188. doi: 10.1093/nar/15.suppl.r53. [DOI] [PMC free article] [PubMed] [Google Scholar]
  173. Steege D. A. A nucleotide change in the anticodon of an Escherichia coli serine transfer RNA results in supD-amber suppression. Nucleic Acids Res. 1983 Jun 11;11(11):3823–3832. doi: 10.1093/nar/11.11.3823. [DOI] [PMC free article] [PubMed] [Google Scholar]
  174. Steege D. A., Horabin J. I. Temperature-inducible amber suppressor: construction of plasmids containing the Escherichia coli serU- (supD-) gene under control of the bacteriophage lambda pL promoter. J Bacteriol. 1983 Sep;155(3):1417–1425. doi: 10.1128/jb.155.3.1417-1425.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  175. Strigini P., Brickman E. Analysis of specific misreading in Escherichia coli. J Mol Biol. 1973 Apr 25;75(4):659–672. doi: 10.1016/0022-2836(73)90299-4. [DOI] [PubMed] [Google Scholar]
  176. Strigini P., Gorini L. Ribosomal mutations affecting efficiency of amber suppression. J Mol Biol. 1970 Feb 14;47(3):517–530. doi: 10.1016/0022-2836(70)90319-0. [DOI] [PubMed] [Google Scholar]
  177. Sullivan M. A., Bock R. M. Isolation and characterization of antisuppressor mutations in Escherichia coli. J Bacteriol. 1985 Jan;161(1):377–384. doi: 10.1128/jb.161.1.377-384.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  178. Sullivan M. A., Cannon J. F., Webb F. H., Bock R. M. Antisuppressor mutation in Escherichia coli defective in biosynthesis of 5-methylaminomethyl-2-thiouridine. J Bacteriol. 1985 Jan;161(1):368–376. doi: 10.1128/jb.161.1.368-376.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  179. Sánchez-Anzaldo F. J., Bastarrachea F. Genetic characterization of streptomycin-resistant and -dependent mutants of Escherichia coli K12. Mol Gen Genet. 1974 Apr 9;130(1):47–64. doi: 10.1007/BF00270518. [DOI] [PubMed] [Google Scholar]
  180. Tamura F., Nishimura S., Ohki M. The E. coli divE mutation, which differentially inhibits synthesis of certain proteins, is in tRNASer1. EMBO J. 1984 May;3(5):1103–1107. doi: 10.1002/j.1460-2075.1984.tb01936.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  181. Tapio S., Kurland C. G. Mutant EF-Tu increases missense error in vitro. Mol Gen Genet. 1986 Oct;205(1):186–188. doi: 10.1007/BF02428051. [DOI] [PubMed] [Google Scholar]
  182. Thorbjarnardóttir S., Uemura H., Dingermann T., Rafnar T., Thorsteinsdóttir S., Söll D., Eggertsson G. Escherichia coli supH suppressor: temperature-sensitive missense suppression caused by an anticodon change in tRNASer2. J Bacteriol. 1985 Jan;161(1):207–211. doi: 10.1128/jb.161.1.207-211.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  183. Topisirovic L., Villarroel R., De Wilde M., Herzog A., Cabezón T., Bollen A. Translational fidelity in Escherichia coli: contrasting role of neaA and ramA gene products in the ribosome functioning. Mol Gen Genet. 1977 Feb 28;151(1):89–94. doi: 10.1007/BF00446917. [DOI] [PubMed] [Google Scholar]
  184. Turnbough C. L., Jr, Neill R. J., Landsberg R., Ames B. N. Pseudouridylation of tRNAs and its role in regulation in Salmonella typhimurium. J Biol Chem. 1979 Jun 25;254(12):5111–5119. [PubMed] [Google Scholar]
  185. Uemura H., Thorbjarnardóttir S., Gamulin V., Yano J., Andrésson O. S., Söll D., Eggertsson G. supN ochre suppressor gene in Escherichia coli codes for tRNALys. J Bacteriol. 1985 Sep;163(3):1288–1289. doi: 10.1128/jb.163.3.1288-1289.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  186. Vacher J., Buckingham R. H. Effect of photochemical crosslink S4U(8)-C(13) on suppressor activity of su+ tRNATrp from Escherichia coli. J Mol Biol. 1979 Apr 5;129(2):287–294. doi: 10.1016/0022-2836(79)90282-1. [DOI] [PubMed] [Google Scholar]
  187. Vacher J., Grosjean H., Houssier C., Buckingham R. H. The effect of point mutations affecting Escherichia coli tryptophan tRNA on anticodon-anticodon interactions and on UGA suppression. J Mol Biol. 1984 Aug 5;177(2):329–342. doi: 10.1016/0022-2836(84)90460-1. [DOI] [PubMed] [Google Scholar]
  188. Vacher J., Springer M., Buckingham R. H. Functional mutants of phenylalanine transfer RNA from Escherichia coli. EMBO J. 1985 Feb;4(2):509–513. doi: 10.1002/j.1460-2075.1985.tb03657.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  189. Vijgenboom E., Vink T., Kraal B., Bosch L. Mutants of the elongation factor EF-Tu, a new class of nonsense suppressors. EMBO J. 1985 Apr;4(4):1049–1052. doi: 10.1002/j.1460-2075.1985.tb03737.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  190. Vold B. S., Lazar J. M., Gray A. M. Characterization of a deficiency of N6-(delta 2-isopentenyl)-2-methylthioadenosine in the Escherichia coli mutant trpX by use of antibodies to N6-(delta 2-isopentenyl)adenosine. J Biol Chem. 1979 Aug 10;254(15):7362–7367. [PubMed] [Google Scholar]
  191. Weiner A. M., Weber K. A single UGA codon functions as a natural termination signal in the coliphage q beta coat protein cistron. J Mol Biol. 1973 Nov 15;80(4):837–855. doi: 10.1016/0022-2836(73)90213-1. [DOI] [PubMed] [Google Scholar]
  192. Wilson J. H. Function of the bacteriophage T4 transfer RNA's. J Mol Biol. 1973 Mar 15;74(4):753–757. doi: 10.1016/0022-2836(73)90065-x. [DOI] [PubMed] [Google Scholar]
  193. Wilson J. H., Kells S. Bacteriophage T4 transfer RNA. I. Isolation and characterization of two-phage-coded nonsense suppressors. J Mol Biol. 1972 Aug 14;69(1):39–56. doi: 10.1016/0022-2836(72)90022-8. [DOI] [PubMed] [Google Scholar]
  194. Winston F., Botstein D., Miller J. H. Characterization of amber and ochre suppressors in Salmonella typhimurium. J Bacteriol. 1979 Jan;137(1):433–439. doi: 10.1128/jb.137.1.433-439.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  195. Yamaizumi Z., Kuchino Y., Harada F., Nishimura S., McCloskey J. A. Primary structure of Escherichia coli tRNA UUR Leu. Presence of an unknown adenosine derivative in the first position of the anticodon which recognizes the UU codon series. J Biol Chem. 1980 Mar 10;255(5):2220–2225. [PubMed] [Google Scholar]
  196. Yaniv M., Folk W. R., Berg P., Soll L. A single mutational modification of a tryptophan-specific transfer RNA permits aminoacylation by glutamine and translation of the codon UAG. J Mol Biol. 1974 Jun 25;86(2):245–260. doi: 10.1016/0022-2836(74)90016-3. [DOI] [PubMed] [Google Scholar]
  197. Yanofsky C. Mutations affecting tRNATrp and its charging and their effect on regulation of transcription termination at the attenuator of the tryptophan operon. J Mol Biol. 1977 Jul 15;113(4):663–677. doi: 10.1016/0022-2836(77)90229-7. [DOI] [PubMed] [Google Scholar]
  198. Yarus M., Breeden L. Mutants of Su+7 tRNA include a functional tRNA with an altered T pseudo uracil CG sequence. Cell. 1981 Sep;25(3):815–823. doi: 10.1016/0092-8674(81)90189-6. [DOI] [PubMed] [Google Scholar]
  199. Yarus M., Cline S., Raftery L., Wier P., Bradley D. The translational efficiency of tRNA is a property of the anticodon arm. J Biol Chem. 1986 Aug 15;261(23):10496–10505. [PubMed] [Google Scholar]
  200. Yarus M., Folley L. S. Sense codons are found in specific contexts. J Mol Biol. 1985 Apr 20;182(4):529–540. doi: 10.1016/0022-2836(85)90239-6. [DOI] [PubMed] [Google Scholar]
  201. Yarus M. Intrinsic precision of aminoacyl-tRNA synthesis enhanced through parallel systems of ligands. Nat New Biol. 1972 Sep 27;239(91):106–108. doi: 10.1038/newbio239106a0. [DOI] [PubMed] [Google Scholar]
  202. Yarus M., McMillan C., 3rd, Cline S., Bradley D., Snyder M. Construction of a composite tRNA gene by anticodon loop transplant. Proc Natl Acad Sci U S A. 1980 Sep;77(9):5092–5096. doi: 10.1073/pnas.77.9.5092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  203. Yarus M. Translational efficiency of transfer RNA's: uses of an extended anticodon. Science. 1982 Nov 12;218(4573):646–652. doi: 10.1126/science.6753149. [DOI] [PubMed] [Google Scholar]
  204. Yates J. L., Gette W. R., Furth M. E., Nomura M. Effects of ribosomal mutations on the read-through of a chain termination signal: studies on the synthesis of bacteriophage lambda O gene protein in vitro. Proc Natl Acad Sci U S A. 1977 Feb;74(2):689–693. doi: 10.1073/pnas.74.2.689. [DOI] [PMC free article] [PubMed] [Google Scholar]
  205. Yoshimura M., Inokuchi H., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. IV. Amber suppressor Su+6 a double mutant of a new species of leucine tRNA. J Mol Biol. 1984 Aug 25;177(4):627–644. doi: 10.1016/0022-2836(84)90041-x. [DOI] [PubMed] [Google Scholar]
  206. Yoshimura M., Kimura M., Ohno M., Inokuchi H., Ozeki H. Identification of transfer RNA suppressors in Escherichia coli. III. Ochre suppressors of lysine tRNA. J Mol Biol. 1984 Aug 25;177(4):609–625. doi: 10.1016/0022-2836(84)90040-8. [DOI] [PubMed] [Google Scholar]
  207. Zengel J. M., Lindahl L. High-efficiency, temperature-sensitive suppression of amber mutations in Escherichia coli. J Bacteriol. 1981 Jan;145(1):459–465. doi: 10.1128/jb.145.1.459-465.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES