Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1988 Dec;52(4):412–432. doi: 10.1128/mr.52.4.412-432.1988

Biochemistry of the Leishmania species.

R H Glew, A K Saha, S Das, A T Remaley
PMCID: PMC373157  PMID: 3070318

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Amano F., Kitagawa T., Akamatsu Y. Protein kinase activity on the cell surface of a macrophage-like cell line, J774.1 cells. Biochim Biophys Acta. 1984 Mar 23;803(3):163–173. doi: 10.1016/0167-4889(84)90006-5. [DOI] [PubMed] [Google Scholar]
  2. Andrews P. C., Babior B. M. Endogenous protein phosphorylation by resting and activated human neutrophils. Blood. 1983 Feb;61(2):333–340. [PubMed] [Google Scholar]
  3. Antoine J. C., Jouanne C., Ryter A., Zilberfarb V. Leishmania mexicana: a cytochemical and quantitative study of lysosomal enzymes in infected rat bone marrow-derived macrophages. Exp Parasitol. 1987 Dec;64(3):485–498. doi: 10.1016/0014-4894(87)90063-4. [DOI] [PubMed] [Google Scholar]
  4. Arnot D. E., Barker D. C. Biochemical identification of cutaneous leishmanias by analysis of kinetoplast DNA. II. Sequence homologies in Leishmania kDNA. Mol Biochem Parasitol. 1981 May;3(1):47–56. doi: 10.1016/0166-6851(81)90076-1. [DOI] [PubMed] [Google Scholar]
  5. Bates P. A., Kurtz M. K., Gottlieb M., Dwyer D. M. Leishmania donovani: generation of monospecific antibody reagents to soluble acid phosphatase. Exp Parasitol. 1987 Oct;64(2):157–164. doi: 10.1016/0014-4894(87)90139-1. [DOI] [PubMed] [Google Scholar]
  6. Beach D. H., Holz G. G., Jr, Anekwe G. E. Lipids of Leishmania promastigotes. J Parasitol. 1979 Apr;65(2):201–216. [PubMed] [Google Scholar]
  7. Beach D. H., Holz G. G., Jr, Semprevivo L. H., Honigberg B. M. Temperature-dependent fatty acyl group changes in phospholipids of 37 C-adapted Leishmania donovani promastigotes. J Parasitol. 1982 Dec;68(6):1004–1009. [PubMed] [Google Scholar]
  8. Bera T. The gamma-guanidinobutyramide pathway of L-arginine catabolism in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1987 Apr;23(3):183–192. doi: 10.1016/0166-6851(87)90025-9. [DOI] [PubMed] [Google Scholar]
  9. Berens R. L., Deutsch-King L. C., Marr J. J. Leishmania donovani and Leishmania braziliensis: hexokinase, glucose 6-phosphate dehydrogenase, and pentose phosphate shunt activity. Exp Parasitol. 1980 Feb;49(1):1–8. doi: 10.1016/0014-4894(80)90049-1. [DOI] [PubMed] [Google Scholar]
  10. Berman J. D., Neva F. A. Effect of temperature on multiplication of Leishmania amastigotes within human monocyte-derived macrophages in vitro. Am J Trop Med Hyg. 1981 Mar;30(2):318–321. doi: 10.4269/ajtmh.1981.30.318. [DOI] [PubMed] [Google Scholar]
  11. Berridge M. J. Inositol trisphosphate and diacylglycerol as second messengers. Biochem J. 1984 Jun 1;220(2):345–360. doi: 10.1042/bj2200345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Berridge M. J., Irvine R. F. Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature. 1984 Nov 22;312(5992):315–321. doi: 10.1038/312315a0. [DOI] [PubMed] [Google Scholar]
  13. Blum J. J. Oxidation of fatty acids by Leishmania braziliensis panamensis. J Protozool. 1987 May;34(2):169–174. doi: 10.1111/j.1550-7408.1987.tb03155.x. [DOI] [PubMed] [Google Scholar]
  14. Bordier C., Etges R. J., Ward J., Turner M. J., Cardoso de Almeida M. L. Leishmania and Trypanosoma surface glycoproteins have a common glycophospholipid membrane anchor. Proc Natl Acad Sci U S A. 1986 Aug;83(16):5988–5991. doi: 10.1073/pnas.83.16.5988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Bordier C., Garavito R. M., Armbruster B. Biochemical and structural analyses of microtubules in the pellicular membrane of Leishmania tropica. J Protozool. 1982 Nov;29(4):560–565. doi: 10.1111/j.1550-7408.1982.tb01335.x. [DOI] [PubMed] [Google Scholar]
  16. Bubis J., Vedvick T. S., Taylor S. S. Antiparallel alignment of the two protomers of the regulatory subunit dimer of cAMP-dependent protein kinase I. J Biol Chem. 1987 Nov 5;262(31):14961–14966. [PubMed] [Google Scholar]
  17. Buchmüller-Rouiller Y., Mauël J. Impairment of the oxidative metabolism of mouse peritoneal macrophages by intracellular Leishmania spp. Infect Immun. 1987 Mar;55(3):587–593. doi: 10.1128/iai.55.3.587-593.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Cardoso de Almeida M. L., Turner M. J. The membrane form of variant surface glycoproteins of Trypanosoma brucei. Nature. 1983 Mar 24;302(5906):349–352. doi: 10.1038/302349a0. [DOI] [PubMed] [Google Scholar]
  19. Chance M. L., Peters W., Shchory L. Biochemical taxonomy of Leishmania. I. Observations on DNA. Ann Trop Med Parasitol. 1974 Sep;68(3):307–316. [PubMed] [Google Scholar]
  20. Chang K. P. Leishmania donovani: promastigote--macrophage surface interactions in vitro. Exp Parasitol. 1979 Oct;48(2):175–189. doi: 10.1016/0014-4894(79)90097-3. [DOI] [PubMed] [Google Scholar]
  21. Chang K. P. Leishmanicidal mechanisms of human polymorphonuclear phagocytes. Am J Trop Med Hyg. 1981 Mar;30(2):322–333. doi: 10.4269/ajtmh.1981.30.322. [DOI] [PubMed] [Google Scholar]
  22. Chaudhuri G., Chang K. P. Acid protease activity of a major surface membrane glycoprotein (gp63) from Leishmania mexicana promastigotes. Mol Biochem Parasitol. 1988 Jan 1;27(1):43–52. doi: 10.1016/0166-6851(88)90023-0. [DOI] [PubMed] [Google Scholar]
  23. Colomer-Gould V., Glvao Quintao L., Keithly J., Nogueira N. A common major surface antigen on amastigotes and promastigotes of Leishmania species. J Exp Med. 1985 Sep 1;162(3):902–916. doi: 10.1084/jem.162.3.902. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Coombs G. H., Craft J. A., Hart D. T. A comparative study of Leishmania mexicana amastigotes and promastigotes. Enzyme activities and subcellular locations. Mol Biochem Parasitol. 1982 Mar;5(3):199–211. doi: 10.1016/0166-6851(82)90021-4. [DOI] [PubMed] [Google Scholar]
  25. Cross G. A. Eukaryotic protein modification and membrane attachment via phosphatidylinositol. Cell. 1987 Jan 30;48(2):179–181. doi: 10.1016/0092-8674(87)90419-3. [DOI] [PubMed] [Google Scholar]
  26. Darling T. N., Blum J. J. In vitro reversible transformation of Leishmania braziliensis panamensis between promastigote and ellipsoidal forms. J Protozool. 1987 May;34(2):166–168. doi: 10.1111/j.1550-7408.1987.tb03154.x. [DOI] [PubMed] [Google Scholar]
  27. Darling T. N., Davis D. G., London R. E., Blum J. J. Products of Leishmania braziliensis glucose catabolism: release of D-lactate and, under anaerobic conditions, glycerol. Proc Natl Acad Sci U S A. 1987 Oct;84(20):7129–7133. doi: 10.1073/pnas.84.20.7129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Das S., Saha A. K., Mukhopadhyay N. K., Glew R. H. A cyclic nucleotide-independent protein kinase in Leishmania donovani. Biochem J. 1986 Dec 15;240(3):641–649. doi: 10.1042/bj2400641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Das S., Saha A. K., Remaley A. T., Glew R. H., Dowling J. N., Kajiyoshi M., Gottlieb M. Hydrolysis of phosphoproteins and inositol phosphates by cell surface phosphatase of Leishmania donovani. Mol Biochem Parasitol. 1986 Aug;20(2):143–153. doi: 10.1016/0166-6851(86)90026-5. [DOI] [PubMed] [Google Scholar]
  30. Datta A. K., Bhaumik D., Chatterjee R. Isolation and characterization of adenosine kinase from Leishmania donovani. J Biol Chem. 1987 Apr 25;262(12):5515–5521. [PubMed] [Google Scholar]
  31. Di Virgilio F., Lew D. P., Pozzan T. Protein kinase C activation of physiological processes in human neutrophils at vanishingly small cytosolic Ca2+ levels. Nature. 1984 Aug 23;310(5979):691–693. doi: 10.1038/310691a0. [DOI] [PubMed] [Google Scholar]
  32. Dwyer D. M., Gottlieb M. Surface membrane localization of 3'- and 5'-nucleotidase activities in Leishmania donovani promastigotes. Mol Biochem Parasitol. 1984 Feb;10(2):139–150. doi: 10.1016/0166-6851(84)90002-1. [DOI] [PubMed] [Google Scholar]
  33. El-On J., Bradley D. J., Freeman J. C. Leishmania donovani: action of excreted factor on hydrolytic enzyme activity of macrophages from mice with genetically different resistance to infection. Exp Parasitol. 1980 Apr;49(2):167–174. doi: 10.1016/0014-4894(80)90114-9. [DOI] [PubMed] [Google Scholar]
  34. El-On J., Schnur L. F., Greenblatt C. L. Leishmania donovani: physicochemical, immunological, and biological characterization of excreted factor from promastigotes. Exp Parasitol. 1979 Apr;47(2):254–269. doi: 10.1016/0014-4894(79)90078-x. [DOI] [PubMed] [Google Scholar]
  35. Ellenberger T. E., Beverley S. M. Reductions in methotrexate and folate influx in methotrexate-resistant lines of Leishmania major are independent of R or H region amplification. J Biol Chem. 1987 Oct 5;262(28):13501–13506. [PubMed] [Google Scholar]
  36. Etges R. J., Bouvier J., Hoffman R., Bordier C. Evidence that the major surface proteins of three Leishmania species are structurally related. Mol Biochem Parasitol. 1985 Feb;14(2):141–149. doi: 10.1016/0166-6851(85)90033-7. [DOI] [PubMed] [Google Scholar]
  37. Etges R., Bouvier J., Bordier C. The major surface protein of Leishmania promastigotes is a protease. J Biol Chem. 1986 Jul 15;261(20):9098–9101. [PubMed] [Google Scholar]
  38. Etges R., Mukkada A. J. Purification and characterization of a metabolite-regulated pyruvate kinase from Leishmania major promastigotes. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):281–289. doi: 10.1016/0166-6851(88)90048-5. [DOI] [PubMed] [Google Scholar]
  39. Garvey E. P., Santi D. V. A stable binary complex between Leishmania major thymidylate synthase and the substrate deoxyuridylate. A slow-binding interaction. J Biol Chem. 1987 Jul 5;262(19):9068–9074. [PubMed] [Google Scholar]
  40. Gero A. M., Coombs G. H. Leishmania mexicana: conversion of dihydroorotate to orotate in amastigotes and promastigotes. Exp Parasitol. 1982 Oct;54(2):185–195. doi: 10.1016/0014-4894(82)90126-6. [DOI] [PubMed] [Google Scholar]
  41. Glew R. H., Czuczman M. S., Diven W. F., Berens R. L., Pope M. T., Katsoulis D. E. Partial purification and characterization of particulate acid phosphatase of Leishmania donovani promastigotes. Comp Biochem Physiol B. 1982;72(4):581–590. doi: 10.1016/0305-0491(82)90510-7. [DOI] [PubMed] [Google Scholar]
  42. Gordon J. L. Extracellular ATP: effects, sources and fate. Biochem J. 1986 Jan 15;233(2):309–319. doi: 10.1042/bj2330309. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Gottlieb M., Dwyer D. M. Identification and partial characterization of an extracellular acid phosphatase activity of Leishmania donovani promastigotes. Mol Cell Biol. 1982 Jan;2(1):76–81. doi: 10.1128/mcb.2.1.76. [DOI] [PMC free article] [PubMed] [Google Scholar]
  44. Gottlieb M., Dwyer D. M. Leishmania donovani: surface membrane acid phosphatase activity of promastigotes. Exp Parasitol. 1981 Aug;52(1):117–128. doi: 10.1016/0014-4894(81)90067-9. [DOI] [PubMed] [Google Scholar]
  45. Gottlieb M., Dwyer D. M. Protozoan parasite of humans: surface membrane with externally disposed acid phosphatase. Science. 1981 May 22;212(4497):939–941. doi: 10.1126/science.7233189. [DOI] [PubMed] [Google Scholar]
  46. Gottlieb M. Enzyme regulation in a trypanosomatid: effect of purine starvation on levels of 3'-nucleotidase activity. Science. 1985 Jan 4;227(4682):72–74. doi: 10.1126/science.2981117. [DOI] [PubMed] [Google Scholar]
  47. Green T. R., Wu D. E. The NADPH:O2 oxidoreductase of human neutrophils. Stoichiometry of univalent and divalent reduction of O2. J Biol Chem. 1986 May 5;261(13):6010–6015. [PubMed] [Google Scholar]
  48. Haidaris C. G., Bonventre P. F. A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages. J Immunol. 1982 Aug;129(2):850–855. [PubMed] [Google Scholar]
  49. Hammond D. J., Gutteridge W. E. UMP synthesis in the kinetoplastida. Biochim Biophys Acta. 1982 Sep 17;718(1):1–10. doi: 10.1016/0304-4165(82)90002-2. [DOI] [PubMed] [Google Scholar]
  50. Handman E., Goding J. W. The Leishmania receptor for macrophages is a lipid-containing glycoconjugate. EMBO J. 1985 Feb;4(2):329–336. doi: 10.1002/j.1460-2075.1985.tb03633.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  51. Hart D. T., Coombs G. H. Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp Parasitol. 1982 Dec;54(3):397–409. doi: 10.1016/0014-4894(82)90049-2. [DOI] [PubMed] [Google Scholar]
  52. Hassan H. F., Coombs G. H. Leishmania mexicana: purine-metabolizing enzymes of amastigotes and promastigotes. Exp Parasitol. 1985 Apr;59(2):139–150. doi: 10.1016/0014-4894(85)90066-9. [DOI] [PubMed] [Google Scholar]
  53. Hassan H. F., Coombs G. H. Phosphomonoesterases of Leishmania mexicana mexicana and other flagellates. Mol Biochem Parasitol. 1987 Apr;23(3):285–296. doi: 10.1016/0166-6851(87)90035-1. [DOI] [PubMed] [Google Scholar]
  54. Hassan H. F., Mottram J. C., Coombs G. H. Subcellular localisation of purine-metabolising enzymes in Leishmania mexicana mexicana. Comp Biochem Physiol B. 1985;81(4):1037–1040. doi: 10.1016/0305-0491(85)90110-5. [DOI] [PubMed] [Google Scholar]
  55. Herrmann H., Gercken G. Synthesis of phospholipids in Leishmania donovani. Hoppe Seylers Z Physiol Chem. 1980 Nov;361(11):1735–1742. doi: 10.1515/bchm2.1980.361.2.1735. [DOI] [PubMed] [Google Scholar]
  56. Hitchings G. H. The purine metabolism of protozoa. Adv Enzyme Regul. 1982;20:375–386. doi: 10.1016/0065-2571(82)90026-7. [DOI] [PubMed] [Google Scholar]
  57. Jacobs G., Herrmann H., Gercken G. Incorporation of [1-14C]acetate into fatty acids and aliphatic moieties of glycerolipids in Leishmania donov ani promastigotes. Comp Biochem Physiol B. 1982;73(2):367–373. doi: 10.1016/0305-0491(82)90299-1. [DOI] [PubMed] [Google Scholar]
  58. Kaneshiro E. S., Jayasimhulu K., Lester R. L. Characterization of inositol lipids from Leishmania donovani promastigotes: identification of an inositol sphingophospholipid. J Lipid Res. 1986 Dec;27(12):1294–1303. [PubMed] [Google Scholar]
  59. Keegan F. P., Sansone L., Blum J. J. Oxidation of glucose, ribose, alanine, and glutamate by Leishmania braziliensis panamensis. J Protozool. 1987 May;34(2):174–179. doi: 10.1111/j.1550-7408.1987.tb03156.x. [DOI] [PubMed] [Google Scholar]
  60. Keithly J. S., Bienen E. J. Infectivity of Leishmania donovani primary culture promastigotes for golden hamsters. Short communication. Acta Trop. 1981 Mar;38(1):85–89. [PubMed] [Google Scholar]
  61. Killick-Kendrick R., Molyneux D. H., Hommel M., Leaney A. J., Robertson E. S. Leishmania in phlebotomid sandflies. V. The nature and significance of infections of the pylorus and ileum of the sandfly by leishmaniae of the braziliensis complex. Proc R Soc Lond B Biol Sci. 1977 Aug 22;198(1131):191–199. doi: 10.1098/rspb.1977.0093. [DOI] [PubMed] [Google Scholar]
  62. King D. L., Chang Y. D., Turco S. J. Cell surface lipophosphoglycan of Leishmania donovani. Mol Biochem Parasitol. 1987 May;24(1):47–53. doi: 10.1016/0166-6851(87)90114-9. [DOI] [PubMed] [Google Scholar]
  63. Kink J. A., Chang K. P. N-glycosylation as a biochemical basis for virulence in Leishmania mexicana amazonensis. Mol Biochem Parasitol. 1988 Jan 15;27(2-3):181–190. doi: 10.1016/0166-6851(88)90037-0. [DOI] [PubMed] [Google Scholar]
  64. Kink J. A., Chang K. P. Tunicamycin-resistant Leishmania mexicana amazonensis: expression of virulence associated with an increased activity of N-acetylglucosaminyltransferase and amplification of its presumptive gene. Proc Natl Acad Sci U S A. 1987 Mar;84(5):1253–1257. doi: 10.1073/pnas.84.5.1253. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Kreutzer R. D., Christensen H. A. Characterization of Leishmania spp. by isozyme electrophoresis. Am J Trop Med Hyg. 1980 Mar;29(2):199–208. doi: 10.4269/ajtmh.1980.29.199. [DOI] [PubMed] [Google Scholar]
  66. Locksley R. M., Klebanoff S. J. Oxygen-dependent microbicidal systems of phagocytes and host defense against intracellular protozoa. J Cell Biochem. 1983;22(3):173–185. doi: 10.1002/jcb.240220306. [DOI] [PubMed] [Google Scholar]
  67. Looker D. L., Berens R. L., Marr J. J. Purine metabolism in Leishmania donovani amastigotes and promastigotes. Mol Biochem Parasitol. 1983 Sep;9(1):15–28. doi: 10.1016/0166-6851(83)90053-1. [DOI] [PubMed] [Google Scholar]
  68. Looker D. L., Marr J. J., Berens R. L. Mechanisms of action of pyrazolopyrimidines in Leishmania donovani. J Biol Chem. 1986 Jul 15;261(20):9412–9415. [PubMed] [Google Scholar]
  69. Lovelace J. K., Dwyer D. M., Gottlieb M. Purification and characterization of the extracellular acid phosphatase of Leishmania donovani. Mol Biochem Parasitol. 1986 Sep;20(3):243–251. doi: 10.1016/0166-6851(86)90105-2. [DOI] [PubMed] [Google Scholar]
  70. Lovelace J. K., Gottlieb M. Comparison of extracellular acid phosphatases from various isolates of Leishmania. Am J Trop Med Hyg. 1986 Nov;35(6):1121–1128. doi: 10.4269/ajtmh.1986.35.1121. [DOI] [PubMed] [Google Scholar]
  71. Lovelace J. K., Gottlieb M. Effect of tunicamycin on the extracellular acid phosphatase of Leishmania donovani promastigotes. Mol Biochem Parasitol. 1987 Jan 2;22(1):19–28. doi: 10.1016/0166-6851(87)90065-x. [DOI] [PubMed] [Google Scholar]
  72. Lovelace J. K., Gottlieb M. Evidence for phosphorylation of the extracellular acid phosphatase of Leishmania donovani. J Protozool. 1987 Feb;34(1):78–79. doi: 10.1111/j.1550-7408.1987.tb03136.x. [DOI] [PubMed] [Google Scholar]
  73. Low M. G., Saltiel A. R. Structural and functional roles of glycosyl-phosphatidylinositol in membranes. Science. 1988 Jan 15;239(4837):268–275. doi: 10.1126/science.3276003. [DOI] [PubMed] [Google Scholar]
  74. Majumder G. C., Shrago E., Elson C. E. Changes in cyclic AMP-dependent protein dinase activity in Tetrahymena pyriformis during the growth cycle. Biochim Biophys Acta. 1975 Apr 19;384(2):399–412. doi: 10.1016/0005-2744(75)90041-8. [DOI] [PubMed] [Google Scholar]
  75. Marinkelle C. J. The control of leishmaniases. Bull World Health Organ. 1980;58(6):807–818. [PMC free article] [PubMed] [Google Scholar]
  76. McNeely T. B., Turco S. J. Inhibition of protein kinase C activity by the Leishmania donovani lipophosphoglycan. Biochem Biophys Res Commun. 1987 Oct 29;148(2):653–657. doi: 10.1016/0006-291x(87)90926-0. [DOI] [PubMed] [Google Scholar]
  77. Meshnick S. R., Eaton J. W. Leishmanial superoxide dismutase: a possible target for chemotherapy. Biochem Biophys Res Commun. 1981 Oct 15;102(3):970–976. doi: 10.1016/0006-291x(81)91633-8. [DOI] [PubMed] [Google Scholar]
  78. Mottram J. C., Coombs G. H. Leishmania mexicana: subcellular distribution of enzymes in amastigotes and promastigotes. Exp Parasitol. 1985 Jun;59(3):265–274. doi: 10.1016/0014-4894(85)90081-5. [DOI] [PubMed] [Google Scholar]
  79. Mottram J. C., Coombs G. H. Purification of particulate malate dehydrogenase and phosphoenolpyruvate carboxykinase from Leishmania mexicana mexicana. Biochim Biophys Acta. 1985 Mar 1;827(3):310–319. doi: 10.1016/0167-4838(85)90216-x. [DOI] [PubMed] [Google Scholar]
  80. Mukherjee T., Ray M., Bhaduri A. Aspartate transcarbamylase from Leishmania donovani. A discrete, nonregulatory enzyme as a potential chemotherapeutic site. J Biol Chem. 1988 Jan 15;263(2):708–713. [PubMed] [Google Scholar]
  81. Mukkada A. J., Meade J. C., Glaser T. A., Bonventre P. F. Enhanced metabolism of Leishmania donovani amastigotes at acid pH: an adaptation for intracellular growth. Science. 1985 Sep 13;229(4718):1099–1101. doi: 10.1126/science.4035350. [DOI] [PubMed] [Google Scholar]
  82. Murray H. W., Cartelli D. M. Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and -independent leishmanicidal activity. J Clin Invest. 1983 Jul;72(1):32–44. doi: 10.1172/JCI110972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. Murray H. W. Cell-mediated immune response in experimental visceral leishmaniasis. II. Oxygen-dependent killing of intracellular Leishmania donovani amastigotes. J Immunol. 1982 Jul;129(1):351–357. [PubMed] [Google Scholar]
  84. Murray H. W. Interaction of Leishmania with a macrophage cell line. Correlation between intracellular killing and the generation of oxygen intermediates. J Exp Med. 1981 Jun 1;153(6):1690–1695. doi: 10.1084/jem.153.6.1690. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Murray H. W. Susceptibility of Leishmania to oxygen intermediates and killing by normal macrophages. J Exp Med. 1981 May 1;153(5):1302–1315. doi: 10.1084/jem.153.5.1302. [DOI] [PMC free article] [PubMed] [Google Scholar]
  86. Niedel J. E., Kuhn L. J., Vandenbark G. R. Phorbol diester receptor copurifies with protein kinase C. Proc Natl Acad Sci U S A. 1983 Jan;80(1):36–40. doi: 10.1073/pnas.80.1.36. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. Ohno Y., Seligmann B. E., Gallin J. I. Cytochrome b translocation to human neutrophil plasma membranes and superoxide release. Differential effects of N-formylmethionylleucylphenylalanine, phorbol myristate acetate, and A23187. J Biol Chem. 1985 Feb 25;260(4):2409–2414. [PubMed] [Google Scholar]
  88. Opperdoes F. R., Borst P. Localization of nine glycolytic enzymes in a microbody-like organelle in Trypanosoma brucei: the glycosome. FEBS Lett. 1977 Aug 15;80(2):360–364. doi: 10.1016/0014-5793(77)80476-6. [DOI] [PubMed] [Google Scholar]
  89. Orlandi P. A., Jr, Turco S. J. Structure of the lipid moiety of the Leishmania donovani lipophosphoglycan. J Biol Chem. 1987 Jul 25;262(21):10384–10391. [PubMed] [Google Scholar]
  90. Pascal R. A., Jr, Mannarelli S. J., Ziering D. L. 10-Thiastearic acid inhibits both dihydrosterculic acid biosynthesis and growth of the protozoan Crithidia fasciculata. J Biol Chem. 1986 Sep 25;261(27):12441–12443. [PubMed] [Google Scholar]
  91. Pearson R. D., Harcus J. L., Roberts D., Donowitz G. R. Differential survival of Leishmania donovani amastigotes in human monocytes. J Immunol. 1983 Oct;131(4):1994–1999. [PubMed] [Google Scholar]
  92. Pearson R. D., Harcus J. L., Symes P. H., Romito R., Donowitz G. R. Failure of the phagocytic oxidative response to protect human monocyte-derived macrophages from infection by Leishmania donovani. J Immunol. 1982 Sep;129(3):1282–1286. [PubMed] [Google Scholar]
  93. Pearson R. D., Wheeler D. A., Harrison L. H., Kay H. D. The immunobiology of leishmaniasis. Rev Infect Dis. 1983 Sep-Oct;5(5):907–927. doi: 10.1093/clinids/5.5.907. [DOI] [PubMed] [Google Scholar]
  94. Pick E., Bromberg Y., Shpungin S., Gadba R. Activation of the superoxide forming NADPH oxidase in a cell-free system by sodium dodecyl sulfate. Characterization of the membrane-associated component. J Biol Chem. 1987 Dec 5;262(34):16476–16483. [PubMed] [Google Scholar]
  95. Pratt D. M., David J. R. Monoclonal antibodies that distinguish between New World species of Leishmania. Nature. 1981 Jun 18;291(5816):581–583. doi: 10.1038/291581a0. [DOI] [PubMed] [Google Scholar]
  96. Pritchard D. G., Volanakis J. E., Slutsky G. M., Greenblatt C. L. C-reactive protein binds leishmanial excreted factors. Proc Soc Exp Biol Med. 1985 Mar;178(3):500–503. doi: 10.3181/00379727-178-rc4. [DOI] [PubMed] [Google Scholar]
  97. Pupkis M. F., Coombs G. H. Purification and characterization of proteolytic enzymes of Leishmania mexicana mexicana amastigotes and promastigotes. J Gen Microbiol. 1984 Sep;130(9):2375–2383. doi: 10.1099/00221287-130-9-2375. [DOI] [PubMed] [Google Scholar]
  98. Rahmsdorf H. J., Pai S. H., Ponta H., Herrlich P., Roskoski R., Jr, Schweiger M., Studier F. W. Protein kinase induction in Escherichia coli by bacteriophage T7. Proc Natl Acad Sci U S A. 1974 Feb;71(2):586–589. doi: 10.1073/pnas.71.2.586. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Reiss M., Roos D. Differences in oxygen metabolism of phagocytosing monocytes and neutrophils. J Clin Invest. 1978 Feb;61(2):480–488. doi: 10.1172/JCI108959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  100. Remaley A. T., Das S., Campbell P. I., LaRocca G. M., Pope M. T., Glew R. H. Characterization of Leishmania donovani acid phosphatases. J Biol Chem. 1985 Jan 25;260(2):880–886. [PubMed] [Google Scholar]
  101. Remaley A. T., Glew R. H., Kuhns D. B., Basford R. E., Waggoner A. S., Ernst L. A., Pope M. Leishmania donovani: surface membrane acid phosphatase blocks neutrophil oxidative metabolite production. Exp Parasitol. 1985 Dec;60(3):331–341. doi: 10.1016/0014-4894(85)90039-6. [DOI] [PubMed] [Google Scholar]
  102. Remaley A. T., Kuhns D. B., Basford R. E., Glew R. H., Kaplan S. S. Leishmanial phosphatase blocks neutrophil O-2 production. J Biol Chem. 1984 Sep 25;259(18):11173–11175. [PubMed] [Google Scholar]
  103. Russell D. G. The macrophage-attachment glycoprotein gp63 is the predominant C3-acceptor site on Leishmania mexicana promastigotes. Eur J Biochem. 1987 Apr 1;164(1):213–221. doi: 10.1111/j.1432-1033.1987.tb11013.x. [DOI] [PubMed] [Google Scholar]
  104. Russell D. G., Wilhelm H. The involvement of the major surface glycoprotein (gp63) of Leishmania promastigotes in attachment to macrophages. J Immunol. 1986 Apr 1;136(7):2613–2620. [PubMed] [Google Scholar]
  105. Sacks D. L., Perkins P. V. Identification of an infective stage of Leishmania promastigotes. Science. 1984 Mar 30;223(4643):1417–1419. doi: 10.1126/science.6701528. [DOI] [PubMed] [Google Scholar]
  106. Saha A. K., Das S., Glew R. H., Gottlieb M. Resistance of leishmanial phosphatases to inactivation by oxygen metabolites. J Clin Microbiol. 1985 Sep;22(3):329–332. doi: 10.1128/jcm.22.3.329-332.1985. [DOI] [PMC free article] [PubMed] [Google Scholar]
  107. Saha A. K., Dowling J. N., Mukhopadhyay N. K., Glew R. H. Demonstration of two protein kinases in extracts of Legionella micdadei. J Gen Microbiol. 1988 May;134(5):1275–1281. doi: 10.1099/00221287-134-5-1275. [DOI] [PubMed] [Google Scholar]
  108. Shacter-Noiman E., Chock P. B. Properties of a Mr = 38,000 phosphoprotein phosphatase. Modulation by divalent cations, ATP, and fluoride. J Biol Chem. 1983 Apr 10;258(7):4214–4219. [PubMed] [Google Scholar]
  109. Silman I., Futerman A. H. Modes of attachment of acetylcholinesterase to the surface membrane. Eur J Biochem. 1987 Dec 30;170(1-2):11–22. doi: 10.1111/j.1432-1033.1987.tb13662.x. [DOI] [PubMed] [Google Scholar]
  110. Slutzky G. M., El-On J., Greenblatt C. L. Leishmanial excreted factor: protein-bound and free forms from promastigote cultures of Leishmania tropica and Leishmania donovani. Infect Immun. 1979 Dec;26(3):916–924. doi: 10.1128/iai.26.3.916-924.1979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  111. Slutzky G. M., Greenblatt C. L. Identification of galactose as the immunodominant sugar of leishmanial excreted factor and subsequent labeling with galactose oxidase and sodium boro[3H]hydride. Infect Immun. 1982 Jul;37(1):10–14. doi: 10.1128/iai.37.1.10-14.1982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Steiger R. F., Meshnick S. R. Amino-acid and glucose utilization of Leishmania donovani and L. braziliensis. Trans R Soc Trop Med Hyg. 1977;71(5):441–443. doi: 10.1016/0035-9203(77)90049-9. [DOI] [PubMed] [Google Scholar]
  113. Tauber A. I. Protein kinase C and the activation of the human neutrophil NADPH-oxidase. Blood. 1987 Mar;69(3):711–720. [PubMed] [Google Scholar]
  114. Titus R. G., Ribeiro J. M. Salivary gland lysates from the sand fly Lutzomyia longipalpis enhance Leishmania infectivity. Science. 1988 Mar 11;239(4845):1306–1308. doi: 10.1126/science.3344436. [DOI] [PubMed] [Google Scholar]
  115. Tou J. S., Stjernholm R. L. Stimulation of the incorporation of 32Pi and myo-(2-3H)inositol into the phosphoinositides in polymorphonuclear leukocytes during phagocytosis. Arch Biochem Biophys. 1974 Feb;160(2):487–494. doi: 10.1016/0003-9861(74)90425-1. [DOI] [PubMed] [Google Scholar]
  116. Tsunawaki S., Nathan C. F. Enzymatic basis of macrophage activation. Kinetic analysis of superoxide production in lysates of resident and activated mouse peritoneal macrophages and granulocytes. J Biol Chem. 1984 Apr 10;259(7):4305–4312. [PubMed] [Google Scholar]
  117. Turco S. J., Hull S. R., Orlandi P. A., Jr, Shepherd S. D., Homans S. W., Dwek R. A., Rademacher T. W. Structure of the major carbohydrate fragment of the Leishmania donovani lipophosphoglycan. Biochemistry. 1987 Sep 22;26(19):6233–6238. doi: 10.1021/bi00393a042. [DOI] [PubMed] [Google Scholar]
  118. Turco S. J., Wilkerson M. A., Clawson D. R. Expression of an unusual acidic glycoconjugate in Leishmania donovani. J Biol Chem. 1984 Mar 25;259(6):3883–3889. [PubMed] [Google Scholar]
  119. Volpi M., Yassin R., Naccache P. H., Sha'afi R. I. Chemotactic factor causes rapid decreases in phosphatidylinositol,4,5-bisphosphate and phosphatidylinositol 4-monophosphate in rabbit neutrophils. Biochem Biophys Res Commun. 1983 May 16;112(3):957–964. doi: 10.1016/0006-291x(83)91711-4. [DOI] [PubMed] [Google Scholar]
  120. Walter R. D., Opperdoes F. R. Subcellular distribution of adenylate cyclase, cyclic-AMP phosphodiesterase, protein kinases and phosphoprotein phosphatase in Trypanosoma brucei. Mol Biochem Parasitol. 1982 Nov;6(5):287–295. doi: 10.1016/0166-6851(82)90061-5. [DOI] [PubMed] [Google Scholar]
  121. Wandosell F., Serrano L., Hernández M. A., Avila J. Phosphorylation of tubulin by a calmodulin-dependent protein kinase. J Biol Chem. 1986 Aug 5;261(22):10332–10339. [PubMed] [Google Scholar]
  122. Wang C. C. Parasite enzymes as potential targets for antiparasitic chemotherapy. J Med Chem. 1984 Jan;27(1):1–9. doi: 10.1021/jm00367a001. [DOI] [PubMed] [Google Scholar]
  123. Wassef M. K., Fioretti T. B., Dwyer D. M. Lipid analyses of isolated surface membranes of Leishmania donovani promastigotes. Lipids. 1985 Feb;20(2):108–115. doi: 10.1007/BF02534216. [DOI] [PubMed] [Google Scholar]
  124. Weber I. T., Steitz T. A., Bubis J., Taylor S. S. Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase. Biochemistry. 1987 Jan 27;26(2):343–351. doi: 10.1021/bi00376a003. [DOI] [PubMed] [Google Scholar]
  125. Willadsen P. Protein phosphorylation by intact Babesia bovis. Mol Biochem Parasitol. 1984 Jun;12(2):195–205. doi: 10.1016/0166-6851(84)90135-x. [DOI] [PubMed] [Google Scholar]
  126. Williams P., de Vasconcellos Coelho M. Taxonomy and transmission of Leishmania. Adv Parasitol. 1978;16:1–42. doi: 10.1016/s0065-308x(08)60571-0. [DOI] [PubMed] [Google Scholar]
  127. Zehavi U., El-On J., Pearlman E., Abrahams J. C., Greenblatt C. L. Binding of Leishmania promastigotes to macrophages. Z Parasitenkd. 1983;69(4):405–414. doi: 10.1007/BF00927696. [DOI] [PubMed] [Google Scholar]
  128. Zilberstein D., Dwyer D. M. Protonmotive force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1716–1720. doi: 10.1073/pnas.82.6.1716. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. Zoeller R. A., Raetz C. R. Isolation of animal cell mutants deficient in plasmalogen biosynthesis and peroxisome assembly. Proc Natl Acad Sci U S A. 1986 Jul;83(14):5170–5174. doi: 10.1073/pnas.83.14.5170. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES