Skip to main content
Microbiological Reviews logoLink to Microbiological Reviews
. 1988 Dec;52(4):452–484. doi: 10.1128/mr.52.4.452-484.1988

Before enzymes and templates: theory of surface metabolism.

G Wächtershäuser
PMCID: PMC373159  PMID: 3070320

Full text

PDF
452

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andreesen J. R., Gottschalk G. The occurrence of a modified Entner-doudoroff pathway in Clostridium aceticum. Arch Mikrobiol. 1969;69(2):160–170. doi: 10.1007/BF00409760. [DOI] [PubMed] [Google Scholar]
  2. Biebricher C. K., Eigen M., Luce R. Template-free RNA synthesis by Q beta replicase. Nature. 1986 May 1;321(6065):89–91. doi: 10.1038/321089a0. [DOI] [PubMed] [Google Scholar]
  3. COOKSON G. H., RIMINGTON C. Porphobilinogen. Biochem J. 1954 Jul;57(3):476–484. doi: 10.1042/bj0570476. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CRICK F. H. On protein synthesis. Symp Soc Exp Biol. 1958;12:138–163. [PubMed] [Google Scholar]
  5. Cech T. R., Bass B. L. Biological catalysis by RNA. Annu Rev Biochem. 1986;55:599–629. doi: 10.1146/annurev.bi.55.070186.003123. [DOI] [PubMed] [Google Scholar]
  6. Cech T. R. The chemistry of self-splicing RNA and RNA enzymes. Science. 1987 Jun 19;236(4808):1532–1539. doi: 10.1126/science.2438771. [DOI] [PubMed] [Google Scholar]
  7. Chisnell J. R., Premakumar R., Bishop P. E. Purification of a second alternative nitrogenase from a nifHDK deletion strain of Azotobacter vinelandii. J Bacteriol. 1988 Jan;170(1):27–33. doi: 10.1128/jb.170.1.27-33.1988. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Chothia C. Protein structure: the 14th barrel rolls out. Nature. 1988 Jun 16;333(6174):598–599. doi: 10.1038/333598a0. [DOI] [PubMed] [Google Scholar]
  9. Crick F. H. Codon--anticodon pairing: the wobble hypothesis. J Mol Biol. 1966 Aug;19(2):548–555. doi: 10.1016/s0022-2836(66)80022-0. [DOI] [PubMed] [Google Scholar]
  10. Crick F. H. The origin of the genetic code. J Mol Biol. 1968 Dec;38(3):367–379. doi: 10.1016/0022-2836(68)90392-6. [DOI] [PubMed] [Google Scholar]
  11. De Rosa M., Gambacorta A., Nicolaus B., Giardina P., Poerio E., Buonocore V. Glucose metabolism in the extreme thermoacidophilic archaebacterium Sulfolobus solfataricus. Biochem J. 1984 Dec 1;224(2):407–414. doi: 10.1042/bj2240407. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Eakin R. E. AN APPROACH TO THE EVOLUTION OF METABOLISM. Proc Natl Acad Sci U S A. 1963 Mar;49(3):360–366. doi: 10.1073/pnas.49.3.360. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Egami F. Minor elements and evolution. J Mol Evol. 1974 Nov 29;4(2):113–120. doi: 10.1007/BF01732017. [DOI] [PubMed] [Google Scholar]
  14. Egami F. Origin and early evolution of transition element enzymes. J Biochem. 1975 Jun;77(6):1165–1169. [PubMed] [Google Scholar]
  15. Eigen M., Gardiner W., Schuster P., Winkler-Oswatitsch R. The origin of genetic information. Sci Am. 1981 Apr;244(4):88-92, 96, et passim. doi: 10.1038/scientificamerican0481-88. [DOI] [PubMed] [Google Scholar]
  16. Eigen M. Selforganization of matter and the evolution of biological macromolecules. Naturwissenschaften. 1971 Oct;58(10):465–523. doi: 10.1007/BF00623322. [DOI] [PubMed] [Google Scholar]
  17. Fischer F., Zillig W., Stetter K. O., Schreiber G. Chemolithoautotrophic metabolism of anaerobic extremely thermophilic archaebacteria. Nature. 1983 Feb 10;301(5900):511–513. doi: 10.1038/301511a0. [DOI] [PubMed] [Google Scholar]
  18. Follmann H. Have deoxyribonucleotides and DNA been among the earliest biomolecules? Adv Space Res. 1986;6(11):33–38. doi: 10.1016/0273-1177(86)90272-3. [DOI] [PubMed] [Google Scholar]
  19. Gilles H., Thauer R. K. Uroporphyrinogen III, an intermediate in the biosynthesis of the nickel-containing factor F430 in Methanobacterium thermoautotrophicum. Eur J Biochem. 1983 Sep 1;135(1):109–112. doi: 10.1111/j.1432-1033.1983.tb07624.x. [DOI] [PubMed] [Google Scholar]
  20. Guerrier-Takada C., Altman S. Catalytic activity of an RNA molecule prepared by transcription in vitro. Science. 1984 Jan 20;223(4633):285–286. doi: 10.1126/science.6199841. [DOI] [PubMed] [Google Scholar]
  21. Guerrier-Takada C., Gardiner K., Marsh T., Pace N., Altman S. The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell. 1983 Dec;35(3 Pt 2):849–857. doi: 10.1016/0092-8674(83)90117-4. [DOI] [PubMed] [Google Scholar]
  22. Hartman H. Speculations on the origin and evolution of metabolism. J Mol Evol. 1975 Mar 24;4(4):359–370. doi: 10.1007/BF01732537. [DOI] [PubMed] [Google Scholar]
  23. Hatfield D., Diamond A., Dudock B. Opal suppressor serine tRNAs from bovine liver form phosphoseryl-tRNA. Proc Natl Acad Sci U S A. 1982 Oct;79(20):6215–6219. doi: 10.1073/pnas.79.20.6215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Hemmingsen S. M., Woolford C., van der Vies S. M., Tilly K., Dennis D. T., Georgopoulos C. P., Hendrix R. W., Ellis R. J. Homologous plant and bacterial proteins chaperone oligomeric protein assembly. Nature. 1988 May 26;333(6171):330–334. doi: 10.1038/333330a0. [DOI] [PubMed] [Google Scholar]
  25. Hill R. E., Iwanow A., Sayer B. G., Wysocka W., Spenser I. D. The regiochemistry and stereochemistry of the biosynthesis of vitamin B6 from triose units. J Biol Chem. 1987 Jun 5;262(16):7463–7471. [PubMed] [Google Scholar]
  26. Hill R. E., Rowell F. J., Gupta R. N., Spenser I. D. Biosynthesis of vitamin B 6 . J Biol Chem. 1972 Mar 25;247(6):1869–1882. [PubMed] [Google Scholar]
  27. Hochstein L. I. The metabolism of carbohydrates by extremely halophilic bacteria: glucose metabolism via a modified Entner-Doudoroff pathway. Can J Microbiol. 1974 Aug;20(8):1085–1091. doi: 10.1139/m74-170. [DOI] [PubMed] [Google Scholar]
  28. Horowitz N. H. On the Evolution of Biochemical Syntheses. Proc Natl Acad Sci U S A. 1945 Jun;31(6):153–157. doi: 10.1073/pnas.31.6.153. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Hou Y. M., Schimmel P. A simple structural feature is a major determinant of the identity of a transfer RNA. Nature. 1988 May 12;333(6169):140–145. doi: 10.1038/333140a0. [DOI] [PubMed] [Google Scholar]
  30. Iwashima A., Nosaka K., Nishimura H., Kimura Y. Some properties of a Saccharomyces cerevisiae mutant resistant to 2-amino-4-methyl-5-beta-hydroxyethylthiazole. J Gen Microbiol. 1986 Jun;132(6):1541–1546. doi: 10.1099/00221287-132-6-1541. [DOI] [PubMed] [Google Scholar]
  31. Jaenchen R., Schönheit P., Thauer R. K. Studies on the biosynthesis of coenzyme F420 in methanogenic bacteria. Arch Microbiol. 1984 Apr;137(4):362–365. doi: 10.1007/BF00410735. [DOI] [PubMed] [Google Scholar]
  32. Jones W. J., Nagle D. P., Jr, Whitman W. B. Methanogens and the diversity of archaebacteria. Microbiol Rev. 1987 Mar;51(1):135–177. doi: 10.1128/mr.51.1.135-177.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Joyce G. F., Schwartz A. W., Miller S. L., Orgel L. E. The case for an ancestral genetic system involving simple analogues of the nucleotides. Proc Natl Acad Sci U S A. 1987 Jul;84(13):4398–4402. doi: 10.1073/pnas.84.13.4398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. Kandler O. Archaebakterien und Phylogenie der Organismen. Naturwissenschaften. 1981 Apr;68(4):183–192. doi: 10.1007/BF01047198. [DOI] [PubMed] [Google Scholar]
  35. King G. A. Evolution of the coenzymes. Biosystems. 1980;13(1-2):23–45. doi: 10.1016/0303-2647(80)90003-9. [DOI] [PubMed] [Google Scholar]
  36. King G. A. Recycling, reproduction, and life's origins. Biosystems. 1982;15(2):89–97. doi: 10.1016/0303-2647(82)90022-3. [DOI] [PubMed] [Google Scholar]
  37. King G. A. Symbiosis and the origin of life. Orig Life. 1977 Apr;8(1):39–53. doi: 10.1007/BF00930938. [DOI] [PubMed] [Google Scholar]
  38. Langworthy T. A. Long-chain diglycerol tetraethers from Thermoplasma acidophilum. Biochim Biophys Acta. 1977 Apr 26;487(1):37–50. doi: 10.1016/0005-2760(77)90042-x. [DOI] [PubMed] [Google Scholar]
  39. Lebioda L., Stec B. Crystal structure of enolase indicates that enolase and pyruvate kinase evolved from a common ancestor. Nature. 1988 Jun 16;333(6174):683–686. doi: 10.1038/333683a0. [DOI] [PubMed] [Google Scholar]
  40. Leinfelder W., Zehelein E., Mandrand-Berthelot M. A., Böck A. Gene for a novel tRNA species that accepts L-serine and cotranslationally inserts selenocysteine. Nature. 1988 Feb 25;331(6158):723–725. doi: 10.1038/331723a0. [DOI] [PubMed] [Google Scholar]
  41. Lerner M. R., Boyle J. A., Mount S. M., Wolin S. L., Steitz J. A. Are snRNPs involved in splicing? Nature. 1980 Jan 10;283(5743):220–224. doi: 10.1038/283220a0. [DOI] [PubMed] [Google Scholar]
  42. MARCKER K., SANGER F. N-FORMYL-METHIONYL-S-RNA. J Mol Biol. 1964 Jun;8:835–840. doi: 10.1016/s0022-2836(64)80164-9. [DOI] [PubMed] [Google Scholar]
  43. MILLER S. L. A production of amino acids under possible primitive earth conditions. Science. 1953 May 15;117(3046):528–529. doi: 10.1126/science.117.3046.528. [DOI] [PubMed] [Google Scholar]
  44. Matsumura M., Becktel W. J., Matthews B. W. Hydrophobic stabilization in T4 lysozyme determined directly by multiple substitutions of Ile 3. Nature. 1988 Aug 4;334(6181):406–410. doi: 10.1038/334406a0. [DOI] [PubMed] [Google Scholar]
  45. Michelson A. M., Monny C., Laursen R. A., Leonard N. J. Polynucleotide analogues. VIII. Poly 3-isoadenylic acid. Biochim Biophys Acta. 1966 May 19;119(2):258–267. doi: 10.1016/0005-2787(66)90184-5. [DOI] [PubMed] [Google Scholar]
  46. Miller S. L., Bada J. L. Submarine hot springs and the origin of life. Nature. 1988 Aug 18;334(6183):609–611. doi: 10.1038/334609a0. [DOI] [PubMed] [Google Scholar]
  47. Mizutani T., Tachibana Y. Possible incorporation of phosphoserine into globin readthrough protein via bovine opal suppressor phosphoseryl-tRNA. FEBS Lett. 1986 Oct 20;207(1):162–166. doi: 10.1016/0014-5793(86)80032-1. [DOI] [PubMed] [Google Scholar]
  48. Nasu S., Wicks F. D., Gholson R. K. L-Aspartate oxidase, a newly discovered enzyme of Escherichia coli, is the B protein of quinolinate synthetase. J Biol Chem. 1982 Jan 25;257(2):626–632. [PubMed] [Google Scholar]
  49. Orgel L. E. Did template-directed nucleation precede molecular replication? Orig Life Evol Biosph. 1986;17(1):27–34. doi: 10.1007/BF01809810. [DOI] [PubMed] [Google Scholar]
  50. Orgel L. E. Evolution of the genetic apparatus. J Mol Biol. 1968 Dec;38(3):381–393. doi: 10.1016/0022-2836(68)90393-8. [DOI] [PubMed] [Google Scholar]
  51. Pace N. R., Marsh T. L. RNA catalysis and the origin of life. Orig Life Evol Biosph. 1985;16(2):97–116. doi: 10.1007/BF01809465. [DOI] [PubMed] [Google Scholar]
  52. Paecht-Horowitz M., Berger J., Katchalsky A. Prebiotic synthesis of polypeptides by heterogeneous polycondensation of amino-acid adenylates. Nature. 1970 Nov 14;228(5272):636–639. doi: 10.1038/228636a0. [DOI] [PubMed] [Google Scholar]
  53. Page M. I., Jencks W. P. Entropic contributions to rate accelerations in enzymic and intramolecular reactions and the chelate effect. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1678–1683. doi: 10.1073/pnas.68.8.1678. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Rogers J., Wall R. A mechanism for RNA splicing. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1877–1879. doi: 10.1073/pnas.77.4.1877. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. Rohmer M., Bouvier P., Ourisson G. Molecular evolution of biomembranes: structural equivalents and phylogenetic precursors of sterols. Proc Natl Acad Sci U S A. 1979 Feb;76(2):847–851. doi: 10.1073/pnas.76.2.847. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. Scherer S. Could life have arisen in the primitive atmosphere? J Mol Evol. 1985;22(1):91–94. doi: 10.1007/BF02105809. [DOI] [PubMed] [Google Scholar]
  57. Schimmel P. Aminoacyl tRNA synthetases: general scheme of structure-function relationships in the polypeptides and recognition of transfer RNAs. Annu Rev Biochem. 1987;56:125–158. doi: 10.1146/annurev.bi.56.070187.001013. [DOI] [PubMed] [Google Scholar]
  58. Schleifer K. H., Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev. 1972 Dec;36(4):407–477. doi: 10.1128/br.36.4.407-477.1972. [DOI] [PMC free article] [PubMed] [Google Scholar]
  59. Schön A., Kannangara C. G., Gough S., Söll D. Protein biosynthesis in organelles requires misaminoacylation of tRNA. Nature. 1988 Jan 14;331(6152):187–190. doi: 10.1038/331187a0. [DOI] [PubMed] [Google Scholar]
  60. Schön A., Krupp G., Gough S., Berry-Lowe S., Kannangara C. G., Söll D. The RNA required in the first step of chlorophyll biosynthesis is a chloroplast glutamate tRNA. Nature. 1986 Jul 17;322(6076):281–284. doi: 10.1038/322281a0. [DOI] [PubMed] [Google Scholar]
  61. Scott A. I., Kajiwara M., Santander P. J. Biosynthesis of vitamin B12: concerning the origin of the methine protons of the corrin nucleus. Proc Natl Acad Sci U S A. 1987 Oct;84(19):6616–6618. doi: 10.1073/pnas.84.19.6616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Shapiro R. Prebiotic ribose synthesis: a critical analysis. Orig Life Evol Biosph. 1988;18(1-2):71–85. doi: 10.1007/BF01808782. [DOI] [PubMed] [Google Scholar]
  63. Shapiro R. The improbability of prebiotic nucleic acid synthesis. Orig Life. 1984;14(1-4):565–570. doi: 10.1007/BF00933705. [DOI] [PubMed] [Google Scholar]
  64. Sigler P. B. Transcriptional activation. Acid blobs and negative noodles. Nature. 1988 May 19;333(6170):210–212. doi: 10.1038/333210a0. [DOI] [PubMed] [Google Scholar]
  65. Souillard N., Magot M., Possot O., Sibold L. Nucleotide sequence of regions homologous to nifH (nitrogenase Fe protein) from the nitrogen-fixing archaebacteria Methanococcus thermolithotrophicus and Methanobacterium ivanovii: evolutionary implications. J Mol Evol. 1988;27(1):65–76. doi: 10.1007/BF02099731. [DOI] [PubMed] [Google Scholar]
  66. Spach G. Chiral versus chemical evolutions and the appearance of life. Orig Life. 1984;14(1-4):433–437. doi: 10.1007/BF00933688. [DOI] [PubMed] [Google Scholar]
  67. Stetter K. O., Lauerer G., Thomm M., Neuner A. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science. 1987 May 15;236(4803):822–824. doi: 10.1126/science.236.4803.822. [DOI] [PubMed] [Google Scholar]
  68. Visser C. M., Kellogg R. M. Bioorganic chemistry and the origin of life. J Mol Evol. 1978 Jun 20;11(2):163–168. doi: 10.1007/BF01733891. [DOI] [PubMed] [Google Scholar]
  69. Visser C. M., Kellogg R. M. Biotin. Its place in evolution. J Mol Evol. 1978 Jun 20;11(2):171–187. doi: 10.1007/BF01733892. [DOI] [PubMed] [Google Scholar]
  70. Weiner A. M., Maizels N. tRNA-like structures tag the 3' ends of genomic RNA molecules for replication: implications for the origin of protein synthesis. Proc Natl Acad Sci U S A. 1987 Nov;84(21):7383–7387. doi: 10.1073/pnas.84.21.7383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  71. White H. B., 3rd Coenzymes as fossils of an earlier metabolic state. J Mol Evol. 1976 Mar 29;7(2):101–104. doi: 10.1007/BF01732468. [DOI] [PubMed] [Google Scholar]
  72. Wich G., Jarsch M., Böck A. Apparent operon for a 5S ribosomal RNA gene and for tRNA genes in the archaebacterium Methanococcus vannielii. Mol Gen Genet. 1984;196(1):146–151. doi: 10.1007/BF00334107. [DOI] [PubMed] [Google Scholar]
  73. Wilcox M., Nirenberg M. Transfer RNA as a cofactor coupling amino acid synthesis with that of protein. Proc Natl Acad Sci U S A. 1968 Sep;61(1):229–236. doi: 10.1073/pnas.61.1.229. [DOI] [PMC free article] [PubMed] [Google Scholar]
  74. Woese C. R. A proposal concerning the origin of life on the planet earth. J Mol Evol. 1979 Jul 18;13(2):95–101. doi: 10.1007/BF01732865. [DOI] [PubMed] [Google Scholar]
  75. Woese C. R. Bacterial evolution. Microbiol Rev. 1987 Jun;51(2):221–271. doi: 10.1128/mr.51.2.221-271.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. Woese C. R., Fox G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A. 1977 Nov;74(11):5088–5090. doi: 10.1073/pnas.74.11.5088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  77. Woese C. R., Fox G. E. The concept of cellular evolution. J Mol Evol. 1977 Sep 20;10(1):1–6. doi: 10.1007/BF01796132. [DOI] [PubMed] [Google Scholar]
  78. Woese C. R., Magrum L. J., Fox G. E. Archaebacteria. J Mol Evol. 1978 Aug 2;11(3):245–251. doi: 10.1007/BF01734485. [DOI] [PubMed] [Google Scholar]
  79. Woese C. R. On the evolution of the genetic code. Proc Natl Acad Sci U S A. 1965 Dec;54(6):1546–1552. doi: 10.1073/pnas.54.6.1546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  80. Woese C. Molecular mechanics of translation: a reciprocating ratchet mechanism. Nature. 1970 May 30;226(5248):817–820. doi: 10.1038/226817a0. [DOI] [PubMed] [Google Scholar]
  81. Wong J. T. A co-evolution theory of the genetic code. Proc Natl Acad Sci U S A. 1975 May;72(5):1909–1912. doi: 10.1073/pnas.72.5.1909. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Wong J. T., Bronskill P. M. Inadequacy of prebiotic synthesis as origin of proteinous amino acids. J Mol Evol. 1979 Jul 18;13(2):115–125. doi: 10.1007/BF01732867. [DOI] [PubMed] [Google Scholar]
  83. Wong J. T. Role of minimization of chemical distances between amino acids in the evolution of the genetic code. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1083–1086. doi: 10.1073/pnas.77.2.1083. [DOI] [PMC free article] [PubMed] [Google Scholar]
  84. Wächtershäuser G. An all-purine precursor of nucleic acids. Proc Natl Acad Sci U S A. 1988 Feb;85(4):1134–1135. doi: 10.1073/pnas.85.4.1134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. Ycas M. On earlier states of the biochemical system. J Theor Biol. 1974 Mar;44(1):145–160. doi: 10.1016/s0022-5193(74)80035-4. [DOI] [PubMed] [Google Scholar]

Articles from Microbiological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES