Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1940 Feb;39(2):139–169. doi: 10.1128/jb.39.2.139-169.1940

The Oxidation-Reduction Potential Requirements of a Non-Spore-Forming, Obligate Anaerobe 1,2

Birgit Vennesland a, Martin E Hanke a
PMCID: PMC374561  PMID: 16560282

Full text

PDF
139

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Broh-Kahn R. H., Mirsky I. A. STUDIES ON ANAEROBIOSIS I. : The Nature of the Inhibition of Growth of Cyanide-Treated E. coli by Reversible Oxidation-Reduction Systems. J Bacteriol. 1938 May;35(5):455–475. doi: 10.1128/jb.35.5.455-475.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Eggerth A. H., Gagnon B. H. The Bacteroides of Human Feces. J Bacteriol. 1933 Apr;25(4):389–413. doi: 10.1128/jb.25.4.389-413.1933. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hoogerheide J. C., Kocholaty W. Metabolism of the strict anaerobes (genus: Clostridium): Reduction of amino-acids with gaseous hydrogen by suspensions of Cl. sporogenes. Biochem J. 1938 Jun;32(6):949–957. doi: 10.1042/bj0320949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Hopkins F. G., Morgan E. J. The influence of thiol-groups in the activity of dehydrogenases. Biochem J. 1938 Mar;32(3):611–620. doi: 10.1042/bj0320611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Kligler I. J., Guggenheim K. The Influence of Vitamin C on the Growth of Anaerobes in the Presence of Air, with Special Reference to the Relative Significance of Eh and O(2) in the Growth of Anaerobes. J Bacteriol. 1938 Feb;35(2):141–156. doi: 10.1128/jb.35.2.141-156.1938. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Knaysi G., Dutky S. R. The Growth of a Butanol Clostridium in Relation to the Oxidation-Reduction Potential and Oxygen Content of the Medium. J Bacteriol. 1936 Feb;31(2):137–149. doi: 10.1128/jb.31.2.137-149.1936. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Knight B. C., Fildes P. Oxidation-reduction studies in relation to bacterial growth: The positive limit of oxidation-reduction potential required for the germination of B. tetani spores in vitro. Biochem J. 1930;24(5):1496–1502. doi: 10.1042/bj0241496. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Knight B. C. Oxidation-reduction studies in relation to bacterial growth: A method of poising the oxidation-reduction potential of bacteriological culture media. Biochem J. 1930;24(4):1075–1079. doi: 10.1042/bj0241075. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Longsworth L. G., Macinnes D. A. Bacterial Growth with Automatic pH Control: (a) An Apparatus. (b) Some Tests on the Acid Production of Lactobacillus acidophilus. J Bacteriol. 1935 Jun;29(6):595–607. doi: 10.1128/jb.29.6.595-607.1935. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Quastel J. H., Stephenson M. Experiments on "Strict" Anaerobes: The Relationship of B. sporogenes to Oxygen. Biochem J. 1926;20(5):1125–1137. doi: 10.1042/bj0201125. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Stickland L. H. Studies in the metabolism of the strict anaerobes (genus Clostridium): The chemical reactions by which Cl. sporogenes obtains its energy. Biochem J. 1934;28(5):1746–1759. doi: 10.1042/bj0281746. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Weiss J. E., Rettger L. F. The Gram-negative Bacteroides of the Intestine. J Bacteriol. 1937 Apr;33(4):423–434. doi: 10.1128/jb.33.4.423-434.1937. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES