Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1968 Oct;2(10):1096–1101. doi: 10.1128/jvi.2.10.1096-1101.1968

Evidence for a New Endonuclease Synthesized by λ Bacteriophage

Robert C Shuster a,1, Arthur Weissbach a,2
PMCID: PMC375441  PMID: 5723713

Abstract

Infection of nonlysogenic Escherichia coli CR34(S) (Thy) with bacteriophage λ CI857 resulted in the formation of twisted circular double-stranded phage deoxyribonucleic acid (DNA; species I). When such infected bacteria were incubated in the absence of thymine, there was a significant decrease in the amount of species I DNA after 60 min of incubation. A similar loss of species I λ DNA during incubation in a thymine-deficient medium was also observed after infection of the endonuclease I-deficient strain, E. coli 1100(S) (Thy). This destruction of twisted, circular λ DNA in thymine-deprived cells did not occur in the presence of chloramphenicol nor in lysogenic E. coli CR34 carrying a noninducible λ prophage. It is therefore concluded that the endonuclease which attacks this circular configuration of λ DNA is newly synthesized after infection and is directed by the phage chromosome.

Full text

PDF
1100

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BROOKS K. STUDIES IN THE PHYSIOLOGICAL GENETICS OF SOME SUPPRESSOR-SENSITIVE MUTANTS OF BACTERIOPHAGE LAMBDA. Virology. 1965 Jul;26:489–499. doi: 10.1016/0042-6822(65)90011-5. [DOI] [PubMed] [Google Scholar]
  2. Bode V. C., Kaiser A. D. Changes in the structure and activity of lambda DNA in a superinfected immune bacterium. J Mol Biol. 1965 Dec;14(2):399–417. doi: 10.1016/s0022-2836(65)80190-5. [DOI] [PubMed] [Google Scholar]
  3. Eisen H. A., Fuerst C. R., Siminovitch L., Thomas R., Lambert L., Pereira da Silva L., Jacob F. Genetics and physiology of defective lysogeny in K12 (lambda): studies of early mutants. Virology. 1966 Oct;30(2):224–241. doi: 10.1016/0042-6822(66)90098-5. [DOI] [PubMed] [Google Scholar]
  4. Gingery R., Echols H. Mutants of bacteriophage lambda unable to integrate into the host chromosome. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1507–1514. doi: 10.1073/pnas.58.4.1507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Gottesman M. E., Yarmolinsky M. B. Integration-negative mutants of bacteriophage lambda. J Mol Biol. 1968 Feb 14;31(3):487–505. doi: 10.1016/0022-2836(68)90423-3. [DOI] [PubMed] [Google Scholar]
  6. Joyner A., Isaacs L. N., Echols H., Sly W. S. DNA replication and messenger RNA production after induction of wild-type lambda bacteriophage and lambda mutants. J Mol Biol. 1966 Aug;19(1):174–186. doi: 10.1016/s0022-2836(66)80059-1. [DOI] [PubMed] [Google Scholar]
  7. KORN D. STUDY OF THE DEVELOPMENT OF RESISTANCE TO LAMBDAIND-REPRESSION DURING THYMINELESS INDUCTION OF ESCHERICHIA COLI K12(LAMBDA)THY-. Virology. 1964 Dec;24:570–577. doi: 10.1016/0042-6822(64)90209-0. [DOI] [PubMed] [Google Scholar]
  8. Makover S. A preferred origin for the replication of lambda DNA. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1345–1348. doi: 10.1073/pnas.59.4.1345. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. STACEY K. A., SIMSON E. IMPROVED METHOD FOR THE ISOLATION OF THYMINE-REQUIRING MUTANTS OF ESCHERICHIA COLI. J Bacteriol. 1965 Aug;90:554–555. doi: 10.1128/jb.90.2.554-555.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. SUSSMAN R., JACOB F. [On a thermosensitive repression system in the Escherichia coli lambda bacteriophage]. C R Hebd Seances Acad Sci. 1962 Feb 19;254:1517–1519. [PubMed] [Google Scholar]
  11. Salzman L. A., Weissbach A. Formation of intermediates in the replication of phage lambda DNA. J Mol Biol. 1967 Aug 28;28(1):53–70. doi: 10.1016/s0022-2836(67)80077-9. [DOI] [PubMed] [Google Scholar]
  12. Salzman L. A., Weissbach A. Studies on the formation of circular lambda DNA. Virology. 1967 Jan;31(1):70–77. doi: 10.1016/0042-6822(67)90009-8. [DOI] [PubMed] [Google Scholar]
  13. Weissbach A., Lipton A., Lisio A. Intracellular forms of lambda deoxyribonucleic acid in Escherichia coli infected with clear or virulent mutants of bacteriophage lambda. J Bacteriol. 1966 Apr;91(4):1489–1493. doi: 10.1128/jb.91.4.1489-1493.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. YOUNG E. T., 2nd, SINSHEIMER R. L. NOVEL INTRA-CELLULAR FORMS OF LAMBDA DNA. J Mol Biol. 1964 Dec;10:562–564. doi: 10.1016/s0022-2836(64)80080-2. [DOI] [PubMed] [Google Scholar]
  15. Young E. T., 2nd, Sinsheimer R. L. Vegetative bacteriophage lambda-DNA. II. Physical characterization and replication. J Mol Biol. 1967 Nov 28;30(1):165–200. doi: 10.1016/0022-2836(67)90251-3. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES