Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1967 Feb;1(1):92–96. doi: 10.1128/jvi.1.1.92-96.1967

Control of Bacteriophage-induced Enzyme Synthesis in Cells Infected with a Temperature-sensitive Mutant

Christopher K Mathews 1, Richard H Kessin 1
PMCID: PMC375508  PMID: 4918234

Abstract

The timing of “early” and “late” protein synthesis in Escherichia coli infected with T-even bacteriophage was studied with a temperature-sensitive phage mutant, T4 tsL13. This strain was completely unable to direct the synthesis of phage deoxyribonucleic acid (DNA) at 44 C because it makes a deoxycytidylate hydroxymethylase which cannot act at that temperature. However, the mutant did multiply normally at 30 C. No detectable formation of the late protein, lysozyme, occurred at 44 C, in agreement with the idea, proposed by several workers, that DNA replication is necessary for activation of late genetic functions. However, the formation of an early enzyme, thymidylate synthetase, was shut off at about 10 min, as in normal infection. This implied that separate mechanisms were responsible for cessation of early functions and activation of late ones. That the infected cell at 44 C retained the capacity for synthesis of early enzymes was shown by the fact that DNA synthesis occurred after a culture was transferred from 44 to 30 C as late as 30 min after infection. This synthesis was inhibited by chloramphenicol, indicating that de novo synthesis of an early enzyme can take place at a late period in development. It is suggested that cells infected under normal conditions maintained an appreciable rate of early enzyme synthesis throughout the course of infection.

Full text

PDF
96

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bautz E. K., Kasai T., Reilly E., Bautz F. A. Gene-specific mRNA. II. Regulation of mRNA synthesis in E. coli after infection with bacteriophage T4. Proc Natl Acad Sci U S A. 1966 May;55(5):1081–1088. doi: 10.1073/pnas.55.5.1081. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. CHAMPE S. P. BACTERIOPHAGE REPRODUCTION. Annu Rev Microbiol. 1963;17:87–114. doi: 10.1146/annurev.mi.17.100163.000511. [DOI] [PubMed] [Google Scholar]
  3. Dirksen M. L., Wiberg J. S., Koerner J. F., Buchanan J. M. EFFECT OF ULTRAVIOLET IRRADIATION OF BACTERIOPHAGE T2 ON ENZYME SYNTHESIS IN HOST CELLS. Proc Natl Acad Sci U S A. 1960 Nov;46(11):1425–1430. doi: 10.1073/pnas.46.11.1425. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. EDGAR R. S., LIELAUSIS I. TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4D: THEIR ISOLATION AND GENETIC CHARACTERIZATION. Genetics. 1964 Apr;49:649–662. doi: 10.1093/genetics/49.4.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. EDLIN G. GENE REGULATION DURING BACTERIOPHAGE T4 DEVLOPMENT. I. PHENOTYPIC REVERSION OF T4 AMBER MUTANTS BY 5-FLUOROURACIL. J Mol Biol. 1965 Jun;12:363–374. doi: 10.1016/s0022-2836(65)80260-1. [DOI] [PubMed] [Google Scholar]
  6. Frankel F. R. Studies on the nature of replicating DNA in T4-infected Escherichia coli. J Mol Biol. 1966 Jun;18(1):127–143. doi: 10.1016/s0022-2836(66)80081-5. [DOI] [PubMed] [Google Scholar]
  7. HALL B. D., NYGAARD A. P., GREEN M. H. CONTROL OF T2-SPECIFIC RNA SYNTHESIS. J Mol Biol. 1964 Jul;9:143–153. doi: 10.1016/s0022-2836(64)80096-6. [DOI] [PubMed] [Google Scholar]
  8. Matthews C. K. Deoxyribonucleic acid metabolism and virus-induced enzyme synthesis in a thymine-requiring bacterium infected by a thymine-requiring bacteriophage. Biochemistry. 1966 Jun;5(6):2092–2100. doi: 10.1021/bi00870a042. [DOI] [PubMed] [Google Scholar]
  9. SEKIGUCHI M., COHEN S. S. THE SYNTHESIS OF MESSENGER RNA WITHOUT PROTEIN SYNTHESIS. II. SYNTHESIS OF PHAGE-INDUCED RNA AND SEQUENTIAL ENZYME PRODUCTION. J Mol Biol. 1964 May;8:638–659. doi: 10.1016/s0022-2836(64)80114-5. [DOI] [PubMed] [Google Scholar]
  10. Sercarz E. The production of phage structural proteins in single cells of Escherichia coli infected with phage T4. Virology. 1966 Feb;28(2):339–345. doi: 10.1016/0042-6822(66)90158-9. [DOI] [PubMed] [Google Scholar]
  11. WIBERG J. S., BUCHANAN J. M. STUDIES ON LABILE DEOXYCYTIDYLATE HYDROXYMETHYLASES FROM ESCHERICHIA COLI B INFECTED WITH TEMPERATURE-SENSITIVE MUTANTS OF BACTERIOPHAGE T4. Proc Natl Acad Sci U S A. 1964 Mar;51:421–428. doi: 10.1073/pnas.51.3.421. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. WIBERG J. S., DIRKSEN M. L., EPSTEIN R. H., LURIA S. E., BUCHANAN J. M. Early enzyme synthesis and its control in E. coli infected with some amber mutants of bacteriophage T4. Proc Natl Acad Sci U S A. 1962 Feb;48:293–302. doi: 10.1073/pnas.48.2.293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Warner H. R., Lewis N. The synthesis of deoxycytidylate deaminase and dihydrofolate reductase and its control in Escherichia coli infected with bacteriophage T4 and T-4 amber mutants. Virology. 1966 May;29(1):172–175. doi: 10.1016/0042-6822(66)90208-x. [DOI] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES