Skip to main content
Journal of Virology logoLink to Journal of Virology
. 1968 Jul;2(7):716–722. doi: 10.1128/jvi.2.7.716-722.1968

Isolation and Characterization of Transducing Bacteriophage BP1 for Bacterium anitratum (Achromobacter sp.)

R Twarog 1,2, L E Blouse 1,2
PMCID: PMC375679  PMID: 5723528

Abstract

A small transducing phage has been isolated against a strain of Bacterium anitratum. The particle has a head dimension of 450 A and a tail approximately 200 A long. The latent period is 16 min and the average burst size is 98. The intact particle has an absorption maximum and minimum at 260 and 237 mμ, respectively. The sedimentation coefficient (S20) is 460. The phage contains double-stranded DNA with an S°20,w of 32.8. Molecular weight estimates of the deoxyribonucleic acid ranged from 2.33 × 107 to 2.66 × 107 based on sedimentation velocity studies. The percentage guanine plus cytosine compositions of the deoxyribonucleic acid, determined by melting temperature and cesium chloride equilibrium centrifugation, were 40.7 and 42.0, respectively.

Full text

PDF
718

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BRADLEY D. E. The structure of coliphages. J Gen Microbiol. 1963 Jun;31:435–445. doi: 10.1099/00221287-31-3-435. [DOI] [PubMed] [Google Scholar]
  2. BRADLEY D. E. The structure of some Staphylococcus and Pseudomonas phages. J Ultrastruct Res. 1963 Jun;8:552–565. doi: 10.1016/s0022-5320(63)80055-6. [DOI] [PubMed] [Google Scholar]
  3. BURTON K. A study of the conditions and mechanism of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochem J. 1956 Feb;62(2):315–323. doi: 10.1042/bj0620315. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Baumann P., Doudoroff M., Stanier R. Y. Study of the Moraxella group. I. Genus Moraxella and the Neisseria catarrhalis group. J Bacteriol. 1968 Jan;95(1):58–73. doi: 10.1128/jb.95.1.58-73.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blouse L., Twarog R. Properties of four Herellea phages. Can J Microbiol. 1966 Oct;12(5):1023–1030. doi: 10.1139/m66-137. [DOI] [PubMed] [Google Scholar]
  6. CATLIN B. W., CUNNINGHAM L. S. TRANSFORMING ACTIVITIES AND BASE COMPOSITION OF DEOXYRIBONUCLEATES FROM STRAINS OF MORAXELLA AND MIMA. J Gen Microbiol. 1964 Dec;37:353–367. doi: 10.1099/00221287-37-3-353. [DOI] [PubMed] [Google Scholar]
  7. Eigner J., Doty P. The native, denatured and renatured states of deoxyribonucleic acid. J Mol Biol. 1965 Jul;12(3):549–580. doi: 10.1016/s0022-2836(65)80312-6. [DOI] [PubMed] [Google Scholar]
  8. FRASER D., JERREL E. A. The amino acid composition of T3 bacteriophage. J Biol Chem. 1953 Nov;205(1):291–295. [PubMed] [Google Scholar]
  9. HEARST J. E. The specific volume of various cationic forms of deoxyribonucleic acid. J Mol Biol. 1962 May;4:415–417. doi: 10.1016/s0022-2836(62)80024-2. [DOI] [PubMed] [Google Scholar]
  10. HIATT C. W. KINETICS OF THE INACTIVATION OF VIRUSES. Bacteriol Rev. 1964 Jun;28:150–163. doi: 10.1128/br.28.2.150-163.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Henderson A. The Moraxella iwoffi group of bacteria; a review. Antonie Van Leeuwenhoek. 1965;31(4):395–413. doi: 10.1007/BF02045919. [DOI] [PubMed] [Google Scholar]
  12. KAPLAN C. The heat inactivation of vaccinia virus. J Gen Microbiol. 1958 Feb;18(1):58–63. doi: 10.1099/00221287-18-1-58. [DOI] [PubMed] [Google Scholar]
  13. MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol. 1962 Jul;5:109–118. doi: 10.1016/s0022-2836(62)80066-7. [DOI] [PubMed] [Google Scholar]
  14. Meselson M., Stahl F. W., Vinograd J. EQUILIBRIUM SEDIMENTATION OF MACROMOLECULES IN DENSITY GRADIENTS. Proc Natl Acad Sci U S A. 1957 Jul 15;43(7):581–588. doi: 10.1073/pnas.43.7.581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. PICKETT M. J., MANCLARK C. R. TRIBE MIMEAE: AN ILLEGITIMATE EPITHET. Am J Clin Pathol. 1965 Feb;43:161–165. doi: 10.1093/ajcp/43.2.161. [DOI] [PubMed] [Google Scholar]
  16. SCHILDKRAUT C. L., MARMUR J., DOTY P. Determination of the base composition of deoxyribonucleic acid from its buoyant density in CsCl. J Mol Biol. 1962 Jun;4:430–443. doi: 10.1016/s0022-2836(62)80100-4. [DOI] [PubMed] [Google Scholar]
  17. STUDIER F. W. SEDIMENTATION STUDIES OF THE SIZE AND SHAPE OF DNA. J Mol Biol. 1965 Feb;11:373–390. doi: 10.1016/s0022-2836(65)80064-x. [DOI] [PubMed] [Google Scholar]
  18. Schaub I. G., Hauber F. D. A Biochemical and Serological Study of a Group of Identical Unidentifiable Gram-negative Bacilli from Human Sources. J Bacteriol. 1948 Oct;56(4):379–385. doi: 10.1128/jb.56.4.379-385.1948. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. WELKER N. E., CAMPBELL L. L. INDUCTION AND PROPERTIES OF A TEMPERATURE BACTERIOPHAGE FROM BACILLUS STEAROTHERMOPHILUS. J Bacteriol. 1965 Jan;89:175–184. doi: 10.1128/jb.89.1.175-184.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Journal of Virology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES