Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1971 Dec;22(6):1076–1084. doi: 10.1128/am.22.6.1076-1084.1971

Physiological Studies of an Oligosporogenous Strain of Bacillus popilliae1

Ralph N Costilow 1, Wilson H Coulter 1,2
PMCID: PMC376488  PMID: 4944806

Abstract

A relatively small but consistent increase in the frequency of spore formation by an oligosporogenous strain of Bacillus popilliae (NRRL B-2309M) was obtained by adding 0.1% sodium pyruvate to the sporulation medium. The frequency of spore formation was essentially the same when a low level of glucose, trehalose, or glucose-6-phosphate or a high level of α-methyl-d-mannoside was added as the carbon and energy source. Many other variations in the cultural medium and cultural conditions failed to enhance spore formation of 2309M, and no spores were found in four asporogenic strains under any of the conditions tried. There were no significant differences between the 2309M strain and three nonsporeforming cultures with respect to (i) the rate and extent of growth, (ii) the rates of glucose utilization, or (iii) volatile acid production and utilization. None of the cultures tested was found to produce detectable levels of extracellular protease or an antibiotic. The only consistent marker found associated with spore formation was the development of catalase activity, and this activity was stimulated by heating at 80 C for 10 min. This was not found unless morphological evidence of spore formation was observed. The germination of the spores formed by 2309M in vitro was stimulated by heat shock and by the addition of pyruvate to the germination medium.

Full text

PDF
1077

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Costilow R. N., Sylvester C. J., Pepper R. E. Production and stabilization of cells of Bacillus popilliae and Bacillus lentimorbus. Appl Microbiol. 1966 Mar;14(2):161–169. doi: 10.1128/am.14.2.161-169.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Hsu E. J., Ordal Z. J. Sporulation of Clostridium thermosaccharolyticum under conditions of restricted growth. J Bacteriol. 1969 Mar;97(3):1511–1512. doi: 10.1128/jb.97.3.1511-1512.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Hsu E. J., Ordal Z. J. Sporulation of Clostridium thermosaccharolyticum. Appl Microbiol. 1969 Nov;18(5):958–960. doi: 10.1128/am.18.5.958-960.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. JOHNSTON M. A., DELWICHE E. A. DISTRIBUTION AND CHARACTERISTICS OF THE CATALASES OF LACTOBACILLACEAE. J Bacteriol. 1965 Aug;90:347–351. doi: 10.1128/jb.90.2.347-351.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LAWRENCE N. L., HALVORSON H. O. Studies on the spores of aerobic bacteria. IV. A heat resistant catalase from spores of Bacillus terminalis. J Bacteriol. 1954 Sep;68(3):334–337. doi: 10.1128/jb.68.3.334-337.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  7. MAJUMDER S. K., PADMA M. C. Screening of carbohydrates for sporulation of bacilli in fluid medium. Can J Microbiol. 1957 Jun;3(4):639–642. doi: 10.1139/m57-069. [DOI] [PubMed] [Google Scholar]
  8. McKay L. L., Bhumiratana A., Costilow R. N. Oxidation of acetate by various strains of Bacillus popilliae. Appl Microbiol. 1971 Dec;22(6):1070–1075. doi: 10.1128/am.22.6.1070-1075.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Mitruka B. M., Costilow R. N., Black S. H., Pepper R. E. Comparisons of cells, refractile bodies, and spores of Bacillus popilliae. J Bacteriol. 1967 Sep;94(3):759–765. doi: 10.1128/jb.94.3.759-765.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. PEPPER R. E., COSTILOW R. N. ELECTRON TRANSPORT IN BACILLUS POPILLIAE. J Bacteriol. 1965 Feb;89:271–276. doi: 10.1128/jb.89.2.271-276.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Pheil C. G., Ordal Z. J. Sporulation of the "thermophilic anaerobes". Appl Microbiol. 1967 Jul;15(4):893–898. doi: 10.1128/am.15.4.893-898.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Rhodes R. A., Sharpe E. S., Hall H. H., Jackson R. W. Characteristics of the vegetative growth of Bacillus popilliae. Appl Microbiol. 1966 Mar;14(2):189–195. doi: 10.1128/am.14.2.189-195.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. STEINKRAUS K. H. Studies on the milky disease organisms. II. Saprophytic growth of Bacillus popilliae. J Bacteriol. 1957 Nov;74(5):625–632. doi: 10.1128/jb.74.5.625-632.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Sadoff H. L., Celikkol E., Engelbrecht H. L. Conversion of bacterial aldolase from vegetative to spore form by a sporulation-specific protease. Proc Natl Acad Sci U S A. 1970 Jul;66(3):844–849. doi: 10.1073/pnas.66.3.844. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Schaeffer P. Sporulation and the production of antibiotics, exoenzymes, and exotonins. Bacteriol Rev. 1969 Mar;33(1):48–71. doi: 10.1128/br.33.1.48-71.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Sharpe E. S., St Julian G., Crowell C. Characteristics of a new strain of Bacillus popilliae sporogenic in vitro. Appl Microbiol. 1970 Apr;19(4):681–688. doi: 10.1128/am.19.4.681-688.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Slapikoff S., Spitzer J. L., Vaccaro D. Sporulation in Bacillus brevis: studies on protease and protein turnover. J Bacteriol. 1971 Jun;106(3):739–744. doi: 10.1128/jb.106.3.739-744.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Splittstoesser D. F., Farkas D. F. Effect of cations on activation of Bacillus popilliae spores. J Bacteriol. 1966 Oct;92(4):995–1001. doi: 10.1128/jb.92.4.995-1001.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES