Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1969 Aug;18(2):188–192. doi: 10.1128/am.18.2.188-192.1969

Microbiological Evaluation of Pacific Shrimp Processing1

Janice M Harrison a, J S Lee a
PMCID: PMC377941  PMID: 4896878

Abstract

Microbiological evaluation of Pacific shrimp (Pandalus jordani) processing was made from samples obtained at five key processing points. The microbial count of raw shrimp ranged from 1.3 × 106 to 3.0 × 106. The initial microbial flora, in order of predominance, was Acinetobacter-Moraxella, Flavobacterium, Pseudomonas, gram-positive cocci, and Bacillus species. No yeasts were isolated. Differences in processing practices influenced both microbial count and the shrimp flora. The microbial load, however, always increased after peeling and sorting operations and decreased after cooking, washing, and brining steps. Significantly, the gram-positive cocci were recovered with increasing frequency after each processing step, reaching 76% of the total load in a final product. Most of them, however, were coagulase-negative.

Full text

PDF
188

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baumann P., Doudoroff M., Stanier R. Y. A study of the Moraxella group. II. Oxidative-negative species (genus Acinetobacter). J Bacteriol. 1968 May;95(5):1520–1541. doi: 10.1128/jb.95.5.1520-1541.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Corlett D. A., Jr, Lee J. S., Sinnhuber R. O. Application of replica plating and computer analysis for rapid identification of bacteria in some foods. I. Identification scheme. Appl Microbiol. 1965 Sep;13(5):808–817. doi: 10.1128/am.13.5.808-817.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. GREEN M. Quantitative studies on freshly caught and iced shrimp. Food Res. 1949 Sep-Oct;14(5):372–383. doi: 10.1111/j.1365-2621.1949.tb16245.x. [DOI] [PubMed] [Google Scholar]
  4. HUGH R., LEIFSON E. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol. 1953 Jul;66(1):24–26. doi: 10.1128/jb.66.1.24-26.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. LEE J. S., SHIFLETT M. A., SINNHUBER R. O. RADIATION PASTEURIZATION OF SEAFOOD. I. THE COMBINED EFFECT OF SODIUM BENZOATE AND IRRADIATION FOR RETARDING MICROBIAL GROWTH IN DOVER SOLE (MICROSTOMUS PACIFICUS). Int J Appl Radiat Isot. 1965 Apr;16:221–226. doi: 10.1016/0020-708x(65)90175-4. [DOI] [PubMed] [Google Scholar]
  6. LERKE P., ADAMS R., FARBER L. BACTERIOLOGY OF SPOILAGE OF FISH MUSCLE. 3. CHARACTERIZATION OF SPOILERS. Appl Microbiol. 1965 Jul;13:625–630. doi: 10.1128/am.13.4.625-630.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Narayan K. G., Guinée P. A., Mossel D. A. Use of reagent-impregnated ("Patho-Tec") test papers in the identification of Enterobacteriaceae and similar bacteria. Antonie Van Leeuwenhoek. 1967;33(2):184–188. doi: 10.1007/BF02045549. [DOI] [PubMed] [Google Scholar]
  8. Shaw B. G., Shewan J. M. Psychrophilic spoilage bacteria of fish. J Appl Bacteriol. 1968 Mar;31(1):89–96. doi: 10.1111/j.1365-2672.1968.tb00344.x. [DOI] [PubMed] [Google Scholar]
  9. Shiflett M. A., Lee J. S., Sinnhuber R. O. Microbial flora of irradiated Dungeness crabmeat and Pacific oysters. Appl Microbiol. 1966 May;14(3):411–415. doi: 10.1128/am.14.3.411-415.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Thornley M. J. A taxonomic study of Acinetobacter and related genera. J Gen Microbiol. 1967 Nov;49(2):211–257. doi: 10.1099/00221287-49-2-211. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES