Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1969 Dec;33(4):454–475. doi: 10.1128/br.33.4.454-475.1969

Genetics and chemistry of bacterial flagella.

T Iino
PMCID: PMC378339  PMID: 4906131

Full text

PDF
456

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ABRAM D., KOFFLER H. IN VITRO FORMATION OF FLAGELLA-LIKE FILAMENTS AND OTHER STRUCTURES FROM FLAGELLIN. J Mol Biol. 1964 Jul;9:168–185. doi: 10.1016/s0022-2836(64)80098-x. [DOI] [PubMed] [Google Scholar]
  2. ADA G. L., NOSSAL G. J., PYE J., ABBOT A. ANTIGENS IN IMMUNITY. I. PREPARATION AND PROPERTIES OF FLAGELLAR ANTIGENS FROM SALMONELLA ADELAIDE. Aust J Exp Biol Med Sci. 1964 Jun;42:267–282. [PubMed] [Google Scholar]
  3. ADA G. L., NOSSAL G. J., PYE J., ABBOT A. BEHAVIOUR OF ACTIVE BACTERIAL ANTIGENS DURING THE INDUCTION OF THE IMMUNE RESPONSE. I. PROPERTIES OF FLAGELLAR ANTIGENS FROM SALMONELLA. Nature. 1963 Sep 28;199:1257–1259. doi: 10.1038/1991257a0. [DOI] [PubMed] [Google Scholar]
  4. ADYE J., KOFFLER H., MALLETT G. E. The relative thermostability of flagella from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):251–253. doi: 10.1016/0003-9861(57)90268-0. [DOI] [PubMed] [Google Scholar]
  5. ALLFREY V. G., FAULKNER R., MIRSKY A. E. ACETYLATION AND METHYLATION OF HISTONES AND THEIR POSSIBLE ROLE IN THE REGULATION OF RNA SYNTHESIS. Proc Natl Acad Sci U S A. 1964 May;51:786–794. doi: 10.1073/pnas.51.5.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. AMBLER R. P., REES M. W. Epsilon-N-Methyl-lysine in bacterial flagellar protein. Nature. 1959 Jul 4;184:56–57. doi: 10.1038/184056b0. [DOI] [PubMed] [Google Scholar]
  7. ASAKURA S., EGUCHI G., IINO T. RECONSTITUTION OF BACTERIAL FLAGELLA IN VITRO. J Mol Biol. 1964 Oct;10:42–56. doi: 10.1016/s0022-2836(64)80026-7. [DOI] [PubMed] [Google Scholar]
  8. Aamodt L. W., Eisenstadt J. M. Flagellar synthesis in Salmonella typhimurium: requirement for ribonucleic acid synthesis. J Bacteriol. 1968 Oct;96(4):1079–1088. doi: 10.1128/jb.96.4.1079-1088.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Abram D., Koffler H., Vatter A. E. Basal structure and attachment of flagella in cells of Proteus vulgaris. J Bacteriol. 1965 Nov;90(5):1337–1354. doi: 10.1128/jb.90.5.1337-1354.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Abram D., Vatter A. E., Koffler H. Attachment and structural features of flagella of certain bacilli. J Bacteriol. 1966 May;91(5):2045–2068. doi: 10.1128/jb.91.5.2045-2068.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Adler J. Chemotaxis in bacteria. Science. 1966 Aug 12;153(3737):708–716. doi: 10.1126/science.153.3737.708. [DOI] [PubMed] [Google Scholar]
  12. Armstrong J. B., Adler J., Dahl M. M. Nonchemotactic mutants of Escherichia coli. J Bacteriol. 1967 Jan;93(1):390–398. doi: 10.1128/jb.93.1.390-398.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Armstrong J. B., Adler J. Genetics of motility in Escherichia coli: complementation of paralysed mutants. Genetics. 1967 Jul;56(3):363–373. doi: 10.1093/genetics/56.3.363. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Armstrong J. B., Adler J. Location of genes for motility and chemotaxis on the Escherichia coli genetic map. J Bacteriol. 1969 Jan;97(1):156–161. doi: 10.1128/jb.97.1.156-161.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Asakura S. A kinetic study of in vitro polymerization of flagellin. J Mol Biol. 1968 Jul 14;35(1):237–239. doi: 10.1016/s0022-2836(68)80051-8. [DOI] [PubMed] [Google Scholar]
  16. Asakura S., Eguchi G., Iino T. Salmonella flagella: in vitro reconstruction and over-all shapes of flagellar filaments. J Mol Biol. 1966 Apr;16(2):302–316. doi: 10.1016/s0022-2836(66)80174-2. [DOI] [PubMed] [Google Scholar]
  17. Asakura S., Eguchi G., Iino T. Unidirectional growth of Salmonella flagella in vitro. J Mol Biol. 1968 Jul 14;35(1):227–236. doi: 10.1016/s0022-2836(68)80050-6. [DOI] [PubMed] [Google Scholar]
  18. BEIGHTON E., PORTER A. M., STOCKER B. A. X-ray and related studies of the flagella of non-motile bacteria. Biochim Biophys Acta. 1958 Jul;29(1):8–13. doi: 10.1016/0006-3002(58)90139-2. [DOI] [PubMed] [Google Scholar]
  19. BERNSTEIN A., LEDERBERG J. Agglutination of motile salmonellas by acridines. J Bacteriol. 1955 Feb;69(2):142–146. doi: 10.1128/jb.69.2.142-146.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. BRUNER D. W. Induced variation in the g phases of somatic group B of the genus Salmonella. J Bacteriol. 1953 Feb;65(2):222–223. doi: 10.1128/jb.65.2.222-223.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Bruner D. W., Edwards P. R. Changes Induced in the Nonspecific Antigens of Salmonella. J Bacteriol. 1947 Mar;53(3):359–359. doi: 10.1128/jb.53.3.359-359.1947. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Bruner D. W., Edwards P. R. The Demonstration of Non-specific Components in Salmonella paratyphi A by Induced Variation. J Bacteriol. 1941 Oct;42(4):467–478. doi: 10.1128/jb.42.4.467-478.1941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. CLAUS G. W., ROTH L. E. FINE STRUCTURE OF THE GRAM-NEGATIVE BACTERIUM ACETOBACTER SUBOXYDANS. J Cell Biol. 1964 Feb;20:217–233. doi: 10.1083/jcb.20.2.217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. COETZEE J. N. TRANSDUCTION OF SWARMING IN PROTEUS MIRABILIS. J Gen Microbiol. 1963 Oct;33:1–7. doi: 10.1099/00221287-33-1-1. [DOI] [PubMed] [Google Scholar]
  25. Cohen-Bazire G., London J. Basal organelles of bacterial flagella. J Bacteriol. 1967 Aug;94(2):458–465. doi: 10.1128/jb.94.2.458-465.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. DAWSON G. W., SMITH-KEARY P. F. Episomic control of mutation in Salmonella typhimurium. Heredity (Edinb) 1963 Feb;18:1–20. doi: 10.1038/hdy.1963.1. [DOI] [PubMed] [Google Scholar]
  27. DE ROBERTIS E., PELUFFO C. A. Chemical stimulation and inhibition of bacterial motility studied with a new method. Proc Soc Exp Biol Med. 1951 Nov;78(2):584–589. doi: 10.3181/00379727-78-19148. [DOI] [PubMed] [Google Scholar]
  28. Doetsch R. N., Cook T. M., Vaituzis Z. On the uniqueness of the flagellum of Thiobacillus thiooxidans. Antonie Van Leeuwenhoek. 1967;33(2):196–202. doi: 10.1007/BF02045551. [DOI] [PubMed] [Google Scholar]
  29. Doetsch R. N., Hageage G. J. Motility in procaryotic organisms: problems, points of view, and perspectives. Biol Rev Camb Philos Soc. 1968 Aug;43(3):317–362. doi: 10.1111/j.1469-185x.1968.tb00963.x. [DOI] [PubMed] [Google Scholar]
  30. EDWARDS P. R., BARNES L. A., BABCOCK M. C. The natural occurrence of phase 2 of Salmonella paratyphi A. J Bacteriol. 1950 Jan;59(1):135–135. doi: 10.1128/jb.59.1.135-136.1950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. EDWARDS P. R., DAVIS B. R., CHERRY W. B. Transfer of antigens by phase lysates with particular reference to the l, w antigens of Salmonella. J Bacteriol. 1955 Sep;70(3):279–284. doi: 10.1128/jb.70.3.279-284.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. EDWARDS P. R., SAKAZAKI R., KATO I. Natural occurrence of four reversible flagellar phases in cultures of Salmonella mikawashima. J Bacteriol. 1962 Jul;84:99–103. doi: 10.1128/jb.84.1.99-103.1962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. ELEK S. D., SMITH B. V., HIGHMAN W. THE INTERACTION OF ANTIGEN AND ANTIBODY IN AGGLUTINATION. A STUDY BY ELECTRON MICROSCOPY. Immunology. 1964 Sep;7:570–585. [PMC free article] [PubMed] [Google Scholar]
  34. ENOMOTO M., IINO T. COLONIAL DIMORPHISM IN NONMOTILE SALMONELLA. J Bacteriol. 1963 Sep;86:473–477. doi: 10.1128/jb.86.3.473-477.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. ERLANDER S. R., KOFFLER H., FOSTER J. F. Physical properties of flagellin from Proteus vulgaris, a study involving the application of the Archibald sedimentation principle. Arch Biochem Biophys. 1960 Sep;90:139–153. doi: 10.1016/0003-9861(60)90625-1. [DOI] [PubMed] [Google Scholar]
  36. Edwards P. R., Bruner D. W. The Demonstration of Phase Variation in Salmonella abortus-equi. J Bacteriol. 1939 Jul;38(1):63–72. doi: 10.1128/jb.38.1.63-72.1939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Edwards S., Meynell G. G. The widespred occurrence of enteric flagellar phages. J Gen Virol. 1968 May;2(3):443–444. doi: 10.1099/0022-1317-2-3-443. [DOI] [PubMed] [Google Scholar]
  38. Enomoto M. Composition of chromosome fragments participating in phage P22-mediated transduction of Salmonella typhimurium. Virology. 1967 Nov;33(3):474–482. doi: 10.1016/0042-6822(67)90123-7. [DOI] [PubMed] [Google Scholar]
  39. Enomoto M. Genetic Studies of Paralyzed Mutants in Salmonella. II. Mapping of Three mot Loci by Linkage Analysis. Genetics. 1966 Nov;54(5):1069–1076. doi: 10.1093/genetics/54.5.1069. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Enomoto M. Genetic studies of paralyzed mutant in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics. 1966 Sep;54(3):715–726. doi: 10.1093/genetics/54.3.715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Enomoto M. Slow motile mutant in Salmonella typhimurium. J Bacteriol. 1965 Dec;90(6):1696–1702. doi: 10.1128/jb.90.6.1696-1702.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. FOLLETT E. A., GORDON J. AN ELECTRON MICROSCOPE STUDY OF VIBRIO FLAGELLA. J Gen Microbiol. 1963 Aug;32:235–239. doi: 10.1099/00221287-32-2-235. [DOI] [PubMed] [Google Scholar]
  43. FURNESS G. The transfer of motility and tyrosine requirement to Escherichia coli strain B by recombination with E. coli strain K12. J Gen Microbiol. 1958 Jun;18(3):782–786. doi: 10.1099/00221287-18-3-782. [DOI] [PubMed] [Google Scholar]
  44. Frankel R. W., Joys T. M. Adsorption Specificity of Bacteriophage PBS1. J Bacteriol. 1966 Aug;92(2):388–389. doi: 10.1128/jb.92.2.388-389.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  45. GALARNEAULT T. P., LEIFSON E. Taxonomy of Lophomonas n. gen. Can J Microbiol. 1956 Apr;2(2):102–110. doi: 10.1139/m56-015. [DOI] [PubMed] [Google Scholar]
  46. GLAUERT A. M., KERRIDGE D., HORNE R. W. THE FINE STRUCTURE AND MODE OF ATTACHMENT OF THE SHEATHED FLAGELLUM OF VIBRIO METCHNIKOVII. J Cell Biol. 1963 Aug;18:327–336. doi: 10.1083/jcb.18.2.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
  47. GRACE J. B. Some observations on the flagella and blepharoplasts of Spirillum and Vibrio spp. J Gen Microbiol. 1954 Apr;10(2):325–327. doi: 10.1099/00221287-10-2-325. [DOI] [PubMed] [Google Scholar]
  48. Gerber B. R., Noguchi H. Volume change associated with the G-F transformation of flagellin. J Mol Biol. 1967 Jun 14;26(2):197–210. doi: 10.1016/0022-2836(67)90291-4. [DOI] [PubMed] [Google Scholar]
  49. Giesbrecht P., Gillert K. E., Hofmann S. Uber den elektronenmikroskopischen Nachweis von Antikörpern gegen Bakterien und ihre Organellen. I. Beobachtungen an dem System Bakteriengeissel-konzentrierte Kaninchenantikörper. Zentralbl Bakteriol Orig. 1964 Dec;194(4):503–525. [PubMed] [Google Scholar]
  50. HOUWINK A. L. A macromolecular mono-layer in the cell wall of Spirillum spec. Biochim Biophys Acta. 1953 Mar;10(3):360–366. doi: 10.1016/0006-3002(53)90266-2. [DOI] [PubMed] [Google Scholar]
  51. HOUWINK A. L., van ITERSON W. Electron microscopical observations on bacterial cytology; a study on flagellation. Biochim Biophys Acta. 1950 Mar;5(1):10–44. doi: 10.1016/0006-3002(50)90144-2. [DOI] [PubMed] [Google Scholar]
  52. Hoeniger J. F. Influence of pH on Proteus Flagella. J Bacteriol. 1965 Jul;90(1):275–277. doi: 10.1128/jb.90.1.275-277.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Hoeniger J. F., Van Iterson W., Van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. II. Electron microscopy of negatively stained material. J Cell Biol. 1966 Dec;31(3):603–618. doi: 10.1083/jcb.31.3.603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  54. Holt S. C., Canale-Parola E. Fine structure of Spirochaeta stenostrepta, a free-living, anaerobic spirochete. J Bacteriol. 1968 Sep;96(3):822–835. doi: 10.1128/jb.96.3.822-835.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  55. IINO T. Antigenic phases in Salmonella. Jpn J Med Sci Biol. 1962 Aug;15:228–230. [PubMed] [Google Scholar]
  56. Iino T., Enomoto M. Genetical studies of non-flagellate mutants of Salmonella. J Gen Microbiol. 1966 Jun;43(3):315–327. doi: 10.1099/00221287-43-3-315. [DOI] [PubMed] [Google Scholar]
  57. Iino T., Mitani M. A mutant of Salmonella possessing straight flagella. J Gen Microbiol. 1967 Oct;49(1):81–88. doi: 10.1099/00221287-49-1-81. [DOI] [PubMed] [Google Scholar]
  58. Iino T., Mitani M. Flagella-shape mutants in Salmonella. J Gen Microbiol. 1966 Jul;44(1):27–40. doi: 10.1099/00221287-44-1-27. [DOI] [PubMed] [Google Scholar]
  59. Iino T., Mitani M. Infection of Serratia marcescens by bacteriophage chi. J Virol. 1967 Apr;1(2):445–447. doi: 10.1128/jvi.1.2.445-447.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. Iino T. Polarity of flagellar growth in salmonella. J Gen Microbiol. 1969 May;56(2):227–239. doi: 10.1099/00221287-56-2-227. [DOI] [PubMed] [Google Scholar]
  61. Iino T. A Stabilizer of Antigenic Phases in Salmonella Abortus-Equi. Genetics. 1961 Nov;46(11):1465–1469. doi: 10.1093/genetics/46.11.1465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  62. Iino T. Anomalous Homology of Flagellar Phases in Salmonella. Genetics. 1961 Nov;46(11):1471–1474. doi: 10.1093/genetics/46.11.1471. [DOI] [PMC free article] [PubMed] [Google Scholar]
  63. JOYS T. M., STOCKER B. A. Mutation and recombination of flagellar antigen i of Salmonella typhimurium. Nature. 1963 Jan 26;197:413–414. doi: 10.1038/197413a0. [DOI] [PubMed] [Google Scholar]
  64. Jahn T. L., Bovee E. C. Movement and locomotion of microorganisms. Annu Rev Microbiol. 1965;19:21–58. doi: 10.1146/annurev.mi.19.100165.000321. [DOI] [PubMed] [Google Scholar]
  65. Joys T. M. Correlation between susceptibility to bacteriophage PBS1 and motility in Bacillus subtilis. J Bacteriol. 1965 Dec;90(6):1575–1577. doi: 10.1128/jb.90.6.1575-1577.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  66. Joys T. M., Frankel R. W. Genetic control of flagellation in Bacillus subtilis. J Bacteriol. 1967 Jul;94(1):32–37. doi: 10.1128/jb.94.1.32-37.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  67. Joys T. M., Stocker B. A. Complementation of non-flagellate Salmonella mutants. J Gen Microbiol. 1965 Oct;41(1):47–55. doi: 10.1099/00221287-41-1-47. [DOI] [PubMed] [Google Scholar]
  68. Joys T. M., Stocker B. A. Isolation and serological analysis of mutant forms of flagellar antigen i of Salmonella typhimurium. J Gen Microbiol. 1966 Jul;44(1):121–138. doi: 10.1099/00221287-44-1-121. [DOI] [PubMed] [Google Scholar]
  69. Joys T. M. The structure of flagella and the genetic control of flagellation in Eubacteriales. A review. Antonie Van Leeuwenhoek. 1968;34(2):205–225. doi: 10.1007/BF02046432. [DOI] [PubMed] [Google Scholar]
  70. KERRIDGE D. FLAGELLAR SYNTHESIS IN SALMONELLA TYPHIMURIUM: THE INCORPORATION OF ISOTOPICALLY-LABELLED AMINO ACIDS INTO FLAGELLIN. J Gen Microbiol. 1963 Oct;33:63–76. doi: 10.1099/00221287-33-1-63. [DOI] [PubMed] [Google Scholar]
  71. KERRIDGE D., HORNE R. W., GLAUERT A. M. Structural components of flagella from Salmonella typhimurium. J Mol Biol. 1962 Apr;4:227–238. doi: 10.1016/s0022-2836(62)80001-1. [DOI] [PubMed] [Google Scholar]
  72. KERRIDGE D. Synthesis of flagella by amino acid-requiring mutants of Salmonella typhimurium. J Gen Microbiol. 1959 Aug;21:168–179. doi: 10.1099/00221287-21-1-168. [DOI] [PubMed] [Google Scholar]
  73. KERRIDGE D. The effect of amino acid analogues on the synthesis of bacterial flagella. Biochim Biophys Acta. 1959 Feb;31(2):579–581. doi: 10.1016/0006-3002(59)90048-4. [DOI] [PubMed] [Google Scholar]
  74. KERRIDGE D. The effect of inhibitors on the formation of flagella by Salmonella typhimurium. J Gen Microbiol. 1960 Dec;23:519–538. doi: 10.1099/00221287-23-3-519. [DOI] [PubMed] [Google Scholar]
  75. KLEIN R. A HYPOTHESIS ON THE GENETIC MECHANISM GOVERNING PHASE VARIATION IN SALMONELLA. Z Vererbungsl. 1964 Aug 14;95:167–170. doi: 10.1007/BF00894917. [DOI] [PubMed] [Google Scholar]
  76. KOBAYASHI T., KOFFLER H., MALLET G. E. Cysteine-cystine content and the free amino groups of flagellin. Arch Biochem Biophys. 1956 Oct;64(2):509–511. doi: 10.1016/0003-9861(56)90295-8. [DOI] [PubMed] [Google Scholar]
  77. KOBAYASHI T., RINKER J. N., KOFFLER H. Purification and and chemical properties of flagellin. Arch Biochem Biophys. 1959 Oct;84:342–362. doi: 10.1016/0003-9861(59)90598-3. [DOI] [PubMed] [Google Scholar]
  78. KOFFLER H., KOBAYASHI T. Purification of flagella and flagellin with ammonium sulfate. Arch Biochem Biophys. 1957 Mar;67(1):246–248. doi: 10.1016/0003-9861(57)90266-7. [DOI] [PubMed] [Google Scholar]
  79. Keeler R. F., Ritchie A. E., Bryner J. H., Elmore J. The preparation and characterization of cell walls and the preparation of flagella of Vibrio fetus. J Gen Microbiol. 1966 Jun;43(3):439–454. doi: 10.1099/00221287-43-3-439. [DOI] [PubMed] [Google Scholar]
  80. Kerridge D. Flagellar synthesis in Salmonella typhimurium: factors affecting the formation of the flagellar epsilon-N-methyllysine. J Gen Microbiol. 1966 Jan;42(1):71–82. doi: 10.1099/00221287-42-1-71. [DOI] [PubMed] [Google Scholar]
  81. Koffler H., Mallett G. E., Adye J. MOLECULAR BASIS OF BIOLOGICAL STABILITY TO HIGH TEMPERATURES. Proc Natl Acad Sci U S A. 1957 Jun 15;43(6):464–477. doi: 10.1073/pnas.43.6.464. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. LABAW L. W., MOSLEY V. M. Periodic structure in the flagella and cell walls of a bacterium. Biochim Biophys Acta. 1954 Nov;15(3):325–331. doi: 10.1016/0006-3002(54)90033-5. [DOI] [PubMed] [Google Scholar]
  83. LABAW L. W., MOSLEY V. M. Periodic structure in the flagella of Brucella bronchiseptica. Biochim Biophys Acta. 1955 Jul;17(3):322–324. doi: 10.1016/0006-3002(55)90378-4. [DOI] [PubMed] [Google Scholar]
  84. LEDERBERG J. A duplication of the Hl (flagellar antigen) locus in Salmonella. Genetics. 1961 Nov;46:1475–1481. doi: 10.1093/genetics/46.11.1475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  85. LEDERBERG J., EDWARDS P. R. Sero-typic recombination in Salmonella. J Immunol. 1953 Oct;71(4):232–240. [PubMed] [Google Scholar]
  86. LEIFSON E., CARHART S. R., FULTON M. Morphological characteristics of flagella of Proteus and related bacteria. J Bacteriol. 1955 Jan;69(1):73–82. doi: 10.1128/jb.69.1.73-82.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  87. LEIFSON E., HUGH R. Variation in shape and arrangement of bacterial flagella. J Bacteriol. 1953 Mar;65(3):263–271. doi: 10.1128/jb.65.3.263-271.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  88. LEIFSON E. Morphological and physiological characteristics of the genus Chromobacterium. J Bacteriol. 1956 Apr;71(4):393–400. doi: 10.1128/jb.71.4.393-400.1956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  89. LEIFSON E., PALEN M. I. Variations and spontaneous mutations in the genus Listeria in respect to flagellation and motility. J Bacteriol. 1955 Aug;70(2):233–240. doi: 10.1128/jb.70.2.233-240.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  90. LEIFSON E. Staining, shape and arrangement of bacterial flagella. J Bacteriol. 1951 Oct;62(4):377–389. doi: 10.1128/jb.62.4.377-389.1951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  91. LEIFSON E. The effect of formaldehyde on the shape of bacterial flagella. J Gen Microbiol. 1961 May;25:131–133. doi: 10.1099/00221287-25-1-131. [DOI] [PubMed] [Google Scholar]
  92. LEWIS E. B. The phenomenon of position effect. Adv Genet. 1950;3:73–115. doi: 10.1016/s0065-2660(08)60083-8. [DOI] [PubMed] [Google Scholar]
  93. LOWY J., HANSON J. ELECTRON MICROSCOPE STUDIES OF BACTERIAL FLAGELLA. J Mol Biol. 1965 Feb;11:293–313. doi: 10.1016/s0022-2836(65)80059-6. [DOI] [PubMed] [Google Scholar]
  94. LOWY J., HANSON J. STRUCTURE OF BACTERIAL FLAGELLA. Nature. 1964 May 9;202:538–540. doi: 10.1038/202538a0. [DOI] [PubMed] [Google Scholar]
  95. LOWY J., MCDONOUGH M. W. STRUCTURE OF FILAMENTS PRODUCED BY RE-AGGREGATION OF SALMONELLA FLAGELLIN. Nature. 1964 Oct 10;204:125–127. doi: 10.1038/204125a0. [DOI] [PubMed] [Google Scholar]
  96. Lederberg J, Iino T. Phase Variation in Salmonella. Genetics. 1956 Sep;41(5):743–757. doi: 10.1093/genetics/41.5.743. [DOI] [PMC free article] [PubMed] [Google Scholar]
  97. Lederberg J. Linear Inheritance in Transductional Clones. Genetics. 1956 Nov;41(6):845–871. doi: 10.1093/genetics/41.6.845. [DOI] [PMC free article] [PubMed] [Google Scholar]
  98. Leifson E. Development of Flagella on Germinating Spores. J Bacteriol. 1931 May;21(5):357–359. doi: 10.1128/jb.21.5.357-359.1931. [DOI] [PMC free article] [PubMed] [Google Scholar]
  99. Lowy J. Structure of the proximal ends of bacterial flagella. J Mol Biol. 1965 Nov;14(1):297–299. doi: 10.1016/s0022-2836(65)80251-0. [DOI] [PubMed] [Google Scholar]
  100. MALLETT G. E., KOFFLER H. Hypotheses concerning the relative stability of flagella from thermophilic bacteria. Arch Biochem Biophys. 1957 Mar;67(1):254–256. doi: 10.1016/0003-9861(57)90269-2. [DOI] [PubMed] [Google Scholar]
  101. MARTINEZ R. J. A METHOD FOR THE PURIFICATION OF BACTERIAL FLAGELLA BY ION EXCHANGE CHROMATOGRAPHY. J Gen Microbiol. 1963 Oct;33:115–120. doi: 10.1099/00221287-33-1-115. [DOI] [PubMed] [Google Scholar]
  102. MARTINEZ R. J., ROSENBERG E. THERMAL TRANSITION OF SPIRILLUM SERPENS FLAGELLA. J Mol Biol. 1964 May;8:702–707. doi: 10.1016/s0022-2836(64)80119-4. [DOI] [PubMed] [Google Scholar]
  103. MCDONOUGH M. W. AMINO ACID COMPOSITION OF ANTIGENICALLY DISTINCT SALMONELLA FLAGELLAR PROTEINS. J Mol Biol. 1965 Jun;12:342–355. doi: 10.1016/s0022-2836(65)80258-3. [DOI] [PubMed] [Google Scholar]
  104. MEYNELL E. W. A phage, phi chi, which attacks motile bacteria. J Gen Microbiol. 1961 Jun;25:253–290. doi: 10.1099/00221287-25-2-253. [DOI] [PubMed] [Google Scholar]
  105. MURRAY K. THE OCCURRENCE OF EPSILON-N-METHYL LYSINE IN HISTONES. Biochemistry. 1964 Jan;3:10–15. doi: 10.1021/bi00889a003. [DOI] [PubMed] [Google Scholar]
  106. Martinez R. J., Brown D. M., Glazer A. N. The formation of bacterial flagella. 3. Characterization of the subunits of the flagella of Bacillus subtilis and Spirillum serpens. J Mol Biol. 1967 Aug 28;28(1):45–51. doi: 10.1016/s0022-2836(67)80076-7. [DOI] [PubMed] [Google Scholar]
  107. Martinez R. J., Gordee E. Z. Formation of bacterial flagella. I. Demonstration of a functional flagellin pool in spirillum serpens and bacillus subtilis. J Bacteriol. 1966 Feb;91(2):870–875. doi: 10.1128/jb.91.2.870-875.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Martinez R. J., Ichiki A. T., Lundh N. P., Tronick S. R. A single amino acid substitution responsible for altered flagellar morphology. J Mol Biol. 1968 Jun 28;34(3):559–564. doi: 10.1016/0022-2836(68)90180-0. [DOI] [PubMed] [Google Scholar]
  109. Martinez R. J. The formation of bacterial flagella. II. The relative stability of messenger RNA for flagellin biosynthesis. J Mol Biol. 1966 May;17(1):10–17. doi: 10.1016/s0022-2836(66)80090-6. [DOI] [PubMed] [Google Scholar]
  110. Matsumoto H., Tazaki T. Latent H locus in non-motile Escherichia coli. Jpn J Microbiol. 1967 Mar;11(1):13–23. doi: 10.1111/j.1348-0421.1967.tb00316.x. [DOI] [PubMed] [Google Scholar]
  111. Mitani M., Iino T. Electron microscopy of bundled flagella of the curly mutant of Salmonella abortivoequina. J Bacteriol. 1965 Oct;90(4):1096–1101. doi: 10.1128/jb.90.4.1096-1101.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  112. Mitani M., Iino T. Electron microscopy of salmonella flagella in methylcellulose solution. J Gen Microbiol. 1968 Mar;50(3):459–464. doi: 10.1099/00221287-50-3-459. [DOI] [PubMed] [Google Scholar]
  113. NAKAYA R., UCHIDA H., FUKUMI H. Studies on the antigenic patterns of bacterial flagella. Jpn J Med Sci Biol. 1952 Dec;5(6):467–473. doi: 10.7883/yoken1952.5.467. [DOI] [PubMed] [Google Scholar]
  114. PIJPER A. Bacterial flagella and motility. Ergeb Mikrobiol Immunitatsforsch Exp Ther. 1957;30:37–95. doi: 10.1007/978-3-662-25832-3_2. [DOI] [PubMed] [Google Scholar]
  115. PIJPER A., NESER M. L., ABRAHAM G. The wavelengths of helical bacterial flagella. J Gen Microbiol. 1956 Apr;14(2):371–380. doi: 10.1099/00221287-14-2-371. [DOI] [PubMed] [Google Scholar]
  116. PIJPER A. Shape of bacterial flagella. Nature. 1955 Jan 29;175(4448):214–215. doi: 10.1038/175214a0. [DOI] [PubMed] [Google Scholar]
  117. Pearce U. B., Stocker B. A. Phase variation of flagellar antigens in Salmonella: abortive transduction studies. J Gen Microbiol. 1967 Nov;49(2):335–349. doi: 10.1099/00221287-49-2-335. [DOI] [PubMed] [Google Scholar]
  118. QUADLING C., STOCKER B. A. An environmentally-induced transition from the flagellated to the non-flagellated state in Salmonella typhimurium: the fate of parental flagella at cell division. J Gen Microbiol. 1962 Jun;28:257–270. doi: 10.1099/00221287-28-2-257. [DOI] [PubMed] [Google Scholar]
  119. Raimondo L. M., Lundh N. P., Martinez R. J. Primary adsorption site of phage PBS1: the flagellum of Bacillus subtilis. J Virol. 1968 Mar;2(3):256–264. doi: 10.1128/jvi.2.3.256-264.1968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  120. Ritchie A. E., Keeler R. F., Bryner J. H. Anatomical features of Vibrio fetus: Electron microscopic survey. J Gen Microbiol. 1966 Jun;43(3):427–438. doi: 10.1099/00221287-43-3-427. [DOI] [PubMed] [Google Scholar]
  121. Roberts F. F., Jr, Doetsch R. N. Some singular properties of bacterial flagella, with special reference to monotrichous forms. J Bacteriol. 1966 Jan;91(1):414–421. doi: 10.1128/jb.91.1.414-421.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  122. SHERRIS J. C., PRESTON N. W., SHOESMITH J. G. The influence of oxygen and arginine on the motility of a strain of Pseudomonas sp. J Gen Microbiol. 1957 Feb;16(1):86–96. doi: 10.1099/00221287-16-1-86. [DOI] [PubMed] [Google Scholar]
  123. SMITH S. M., STOCKER B. A. Colicinogeny and recombination. Br Med Bull. 1962 Jan;18:46–51. doi: 10.1093/oxfordjournals.bmb.a069934. [DOI] [PubMed] [Google Scholar]
  124. SPICER C. C., DATTA N. Reversion of transduced antigenic characters in Salmonella typhimurium. J Gen Microbiol. 1959 Feb;20(1):136–143. doi: 10.1099/00221287-20-1-136. [DOI] [PubMed] [Google Scholar]
  125. STARR M. P., WILLIAMS R. C. Helical fine structure of flagella of a motile diphtheroid. J Bacteriol. 1952 Jun;63(6):701–706. doi: 10.1128/jb.63.6.701-706.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  126. STOCKER B. A. Abortive transduction of motility in Salmonella; a nonreplicated gene transmitted through many generations to a single descendant. J Gen Microbiol. 1956 Dec;15(3):575–598. doi: 10.1099/00221287-15-3-575. [DOI] [PubMed] [Google Scholar]
  127. STOCKER B. A., CAMPBELL J. C. The effect of non-lethal deflagellation on bacterial motility and observations on flagellar regeneration. J Gen Microbiol. 1959 Jun;20(3):670–685. doi: 10.1099/00221287-20-3-670. [DOI] [PubMed] [Google Scholar]
  128. STOCKER B. A. TRANSFORMATION OF BACILLUS SUBTILIS TO MOTILITY AND PROTOTROPHY: MICROMANIPULATIVE ISOLATION OF BACTERIA OF TRANSFORMED PHENOTYPE. J Bacteriol. 1963 Oct;86:797–804. doi: 10.1128/jb.86.4.797-804.1963. [DOI] [PMC free article] [PubMed] [Google Scholar]
  129. STOCKER B. A. Transduction of flagellar characters in Salmonella. J Gen Microbiol. 1953 Dec;9(3):410–433. doi: 10.1099/00221287-9-3-410. [DOI] [PubMed] [Google Scholar]
  130. Schade S. Z., Adler J., Ris H. How bacteriophage chi attacks motile bacteria. J Virol. 1967 Jun;1(3):599–609. doi: 10.1128/jvi.1.3.599-609.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  131. Suzuki H., Iino T. An assay for newly synthesized intracellular flagellin. Biochim Biophys Acta. 1966 Jul 27;124(1):212–215. doi: 10.1016/0304-4165(66)90337-0. [DOI] [PubMed] [Google Scholar]
  132. TAWARA J. MANNER OF ATTACHMENT OF FLAGELLA IN VIBRIO COMMA. J Bacteriol. 1964 Aug;88:531–532. doi: 10.1128/jb.88.2.531-532.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  133. UCHIDA H., SUNAKAWA S., FUKUMI H. Studies on the bacterial flagella. I. Methods of purification. Jpn J Med Sci Biol. 1952 Oct;5(5):351–355. doi: 10.7883/yoken1952.5.351. [DOI] [PubMed] [Google Scholar]
  134. VAITUZIS Z., DOETSCH R. N. FLAGELLA OF SALMONELLA TYPHIMURIUM SPHEROPLASTS. J Bacteriol. 1965 Jun;89:1586–1593. doi: 10.1128/jb.89.6.1586-1593.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  135. VAN ITERSON, LEENE W. A CYTOCHEMICAL LOCALIZATION OF REDUCTIVE SITES IN A GRAM-NEGATIVE BACTERIUM. TELLURITE REDUCTION IN PROTEUS VULGARIS. J Cell Biol. 1964 Mar;20:377–387. doi: 10.1083/jcb.20.3.377. [DOI] [PMC free article] [PubMed] [Google Scholar]
  136. Van Iterson W., Hoeniger J. F., Van Zanten E. N. Basal bodies of bacterial flagella in Proteus mirabilis. I. Electron microscopy of sectioned material. J Cell Biol. 1966 Dec;31(3):585–601. doi: 10.1083/jcb.31.3.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  137. Vegotsky A., Lim F., Foster J. F., Koffler H. Disintegration of flagella by acid. Arch Biochem Biophys. 1965 Aug;111(2):296–307. doi: 10.1016/0003-9861(65)90190-6. [DOI] [PubMed] [Google Scholar]
  138. WEINBERG E. D., BROOKS J. I. TRACE METAL CONTROL OF BACTERIAL FLAGELLATION. Nature. 1963 Aug 17;199:717–718. doi: 10.1038/199717a0. [DOI] [PubMed] [Google Scholar]
  139. Yamaguchi S., Iino T. Genetic determination of the antigenic specificity of flagellar protein in salmonella. J Gen Microbiol. 1969 Jan;55(1):59–74. doi: 10.1099/00221287-55-1-59. [DOI] [PubMed] [Google Scholar]
  140. Yamaguchi S. Sensitivity of the g-complex antigenic Salmonella strains to M8, a host-range mutant of bacteriophage chi. J Gen Virol. 1968 Jan;2(1):187–190. doi: 10.1099/0022-1317-2-1-187. [DOI] [PubMed] [Google Scholar]
  141. van Iterson W., Hoeniger J. F., van Zanten E. N. Basal bodies of the flagella and particular microtubules in swarmers of Proteus mirabilis. Antonie Van Leeuwenhoek. 1967;33(2):221–225. doi: 10.1007/BF02045556. [DOI] [PubMed] [Google Scholar]
  142. van Iterson W. Symposium on the fine structure and replication of bacteria and their parts. II. Bacterial cytoplasm. Bacteriol Rev. 1965 Sep;29(3):299–325. doi: 10.1128/br.29.3.299-325.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES