Skip to main content
Bacteriological Reviews logoLink to Bacteriological Reviews
. 1970 Mar;34(1):20–39. doi: 10.1128/br.34.1.20-39.1970

Allosteric controls of amphilbolic pathways in bacteria.

B D Sanwal
PMCID: PMC378347  PMID: 4315011

Full text

PDF
22

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ATKINSON D. E., WALTON G. M. KINETICS OF REGULATORY ENZYMES. ESCHERICHIA COLI PHOSPHOFRUCTOKINASE. J Biol Chem. 1965 Feb;240:757–763. [PubMed] [Google Scholar]
  2. Alberts A. W., Vagelos P. R. Acetyl CoA carboxylase. I. Requirement for two protein fractions. Proc Natl Acad Sci U S A. 1968 Feb;59(2):561–568. doi: 10.1073/pnas.59.2.561. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Amarasingham C. R., Davis B. D. Regulation of alpha-ketoglutarate dehydrogenase formation in Escherichia coli. J Biol Chem. 1965 Sep;240(9):3664–3668. [PubMed] [Google Scholar]
  4. Atkinson D. E. Biological feedback control at the molecular level. Science. 1965 Nov 12;150(3698):851–857. doi: 10.1126/science.150.3698.851. [DOI] [PubMed] [Google Scholar]
  5. Atkinson D. E. The energy charge of the adenylate pool as a regulatory parameter. Interaction with feedback modifiers. Biochemistry. 1968 Nov;7(11):4030–4034. doi: 10.1021/bi00851a033. [DOI] [PubMed] [Google Scholar]
  6. BRADY R. O., GURIN S. Biosynthesis of fatty acids by cell-free or water-soluble enzyme systems. J Biol Chem. 1952 Nov;199(1):421–431. [PubMed] [Google Scholar]
  7. Bailey E., Stirpe F., Taylor C. B. Regulation of rat liver pyruvate kinase. The effect of preincubation, pH, copper ions, fructose 1,6-diphosphate and dietary changes on enzyme activity. Biochem J. 1968 Jul;108(3):427–436. doi: 10.1042/bj1080427. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Blangy D., Buc H., Monod J. Kinetics of the allosteric interactions of phosphofructokinase from Escherichia coli. J Mol Biol. 1968 Jan 14;31(1):13–35. doi: 10.1016/0022-2836(68)90051-x. [DOI] [PubMed] [Google Scholar]
  9. CASKEY C. T., ASHTON D. M., WYNGAARDEN J. B. THE ENZYMOLOGY OF FEEDBACK INHIBITION OF GLUTAMINE PHOSPHORIBOSYLPYROPHOSPHATE AMIDOTRANSFERASE BY PURINE RIBONUCLEOTIDES. J Biol Chem. 1964 Aug;239:2570–2579. [PubMed] [Google Scholar]
  10. Caprioli R., Rittenberg D. Pentose synthesis in Escherichia coli. Biochemistry. 1969 Aug;8(8):3375–3384. doi: 10.1021/bi00836a036. [DOI] [PubMed] [Google Scholar]
  11. Cattanéo J., Damotte M., Sigal N., Sanchez-Medina F., Puig J. Genetic studies of Escherichia coli K 12 mutants with alterations in glycogenesis and properties of an altered adenosine diphosphate glucose pyrophosphorylase. Biochem Biophys Res Commun. 1969 Mar 10;34(5):694–701. doi: 10.1016/0006-291x(69)90794-3. [DOI] [PubMed] [Google Scholar]
  12. Chance B., Park J. H. The properties and enzymatic significance of the enzyme-diphosphopyridine nucleotide compound of 3-phosphoglyceraldehyde dehydrogenase. J Biol Chem. 1967 Nov 10;242(21):5093–5105. [PubMed] [Google Scholar]
  13. Chen G. S., Segel I. H. Purification and properties of glycogen phosphorylase from Escherichia coli. Arch Biochem Biophys. 1968 Sep 20;127(1):175–186. doi: 10.1016/0003-9861(68)90214-2. [DOI] [PubMed] [Google Scholar]
  14. Cooper R. A., Kornberg H. L. The direct synthesis of phosphoenolpyruvate from pyruvate by Escherichia coli. Proc R Soc Lond B Biol Sci. 1967 Sep 12;168(1012):263–280. doi: 10.1098/rspb.1967.0065. [DOI] [PubMed] [Google Scholar]
  15. Corwin L. M., Fanning G. R. Studies of parameters affecting the allosteric nature of phosphoenolpyruvate carboxylase of Escherichia coli. J Biol Chem. 1968 Jun 25;243(12):3517–3525. [PubMed] [Google Scholar]
  16. Cox G. B., Snoswell A. M., Gibson F. The use of a ubiquinone-deficient mutant in the study of malate oxidation in Escherichia coli. Biochim Biophys Acta. 1968 Jan 15;153(1):1–12. doi: 10.1016/0005-2728(68)90140-0. [DOI] [PubMed] [Google Scholar]
  17. DATTA P., GEST H. CONTROL OF ENZYME ACTIVITY BY CONCERTED FEEDBACK INHIBITION. Proc Natl Acad Sci U S A. 1964 Oct;52:1004–1009. doi: 10.1073/pnas.52.4.1004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. DAVIS B. D. The teleonomic significance of biosynthetic control mechanisms. Cold Spring Harb Symp Quant Biol. 1961;26:1–10. doi: 10.1101/sqb.1961.026.01.005. [DOI] [PubMed] [Google Scholar]
  19. EAGON R. G. RATE LIMITING EFFECTS OF PYRIDINE NUCLEOTIDES ON CARBOHYDRATE CATABOLIC PATHWAYS OF MICROORGANISMS. Biochem Biophys Res Commun. 1963 Aug 1;12:274–279. doi: 10.1016/0006-291x(63)90295-x. [DOI] [PubMed] [Google Scholar]
  20. EGGLESTON L. V., HEMS R. Separation of adenosine phosphates by paper chromotography and the equilibrium constant of the myokinase system. Biochem J. 1952 Sep;52(1):156–160. doi: 10.1042/bj0520156. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. FITZ-JAMES P. C. Participation of the cytoplasmic membrane in the growth and spore fromation of bacilli. J Biophys Biochem Cytol. 1960 Oct;8:507–528. doi: 10.1083/jcb.8.2.507. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Flechtner V. R., Hanson R. S. Coarse and fine control of citrate synthase from Bacillus subtilis. Biochim Biophys Acta. 1969 Jul 30;184(2):252–262. doi: 10.1016/0304-4165(69)90027-0. [DOI] [PubMed] [Google Scholar]
  23. Fraenkel D. G., Horecker B. L. Fructose-1, 6-diphosphatase and acid hexose phosphatase of Escherichia coli. J Bacteriol. 1965 Oct;90(4):837–842. doi: 10.1128/jb.90.4.837-842.1965. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Fraenkel D. G., Pontremoli S., Horecker B. L. The specific fructose diphosphatase of Escherichia coli: properties and partial purification. Arch Biochem Biophys. 1966 Apr;114(1):4–12. doi: 10.1016/0003-9861(66)90298-0. [DOI] [PubMed] [Google Scholar]
  25. Fraenkel D. G. The accumulation of glucose 6-phosphate from glucose and its effect in an Escherichia coli mutant lacking phosphoglucose isomerase and glucose 6-phosphate dehydrogenase. J Biol Chem. 1968 Dec 25;243(24):6451–6457. [PubMed] [Google Scholar]
  26. Frieden C. Treatment of enzyme kinetic data. II. The multisite case: comparison of allosteric models and a possible new mechanism. J Biol Chem. 1967 Sep 25;242(18):4045–4052. [PubMed] [Google Scholar]
  27. GERHART J. C., PARDEE A. B. ASPARTATE TRANSCARBAMYLASE, AN ENZYME DESIGNED FOR FEEDBACK INHIBITION. Fed Proc. 1964 May-Jun;23:727–735. [PubMed] [Google Scholar]
  28. GERHART J. C., PARDEE A. B. The enzymology of control by feedback inhibition. J Biol Chem. 1962 Mar;237:891–896. [PubMed] [Google Scholar]
  29. GREENBERG E., PREISS J. THE OCCURRENCE OF ADENOSINE DIPHOSPHATE GLUCOSE: GLYCOGEN TRANSGLUCOSYLASE IN BACTERIA. J Biol Chem. 1964 Dec;239:4314–4315. [PubMed] [Google Scholar]
  30. Gentner N., Greenberg E., Preiss J. TPNH and pyridoxal-5'-phosphate: activators of ADP-glucose pyrophosphorylase of Escherichia coli B1. Biochem Biophys Res Commun. 1969 Aug 7;36(3):373–380. doi: 10.1016/0006-291x(69)90574-9. [DOI] [PubMed] [Google Scholar]
  31. Gibson D. T. Microbial degradation of aromatic compounds. Science. 1967 Sep 13;161(3846):1093–1097. [PubMed] [Google Scholar]
  32. Govons S., Vinopal R., Ingraham J., Preiss J. Isolation of mutants of Escherichia coli B altered in their ability to synthesize glycogen. J Bacteriol. 1969 Feb;97(2):970–972. doi: 10.1128/jb.97.2.970-972.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. HIRSCH C. A., RASMINSKY M., DAVIS B. D., LIN E. C. A FUMARATE REDUCTASE IN ESCHERICHIA COLI DISTINCT FROM SUCCINATE DEHYDROGENASE. J Biol Chem. 1963 Nov;238:3770–3774. [PubMed] [Google Scholar]
  34. Hansen H. G., Henning U. Regulation of pyruvate dehydrogenase activity in Escherichia coli K12. Biochim Biophys Acta. 1966 Aug 10;122(2):355–358. doi: 10.1016/0926-6593(66)90076-2. [DOI] [PubMed] [Google Scholar]
  35. Hayakawa T., Koike M. Mammalian alpha-keto acid dehydrogenase complexes. 3. Resolution and reconstitution of the pig heart pyruvate dehydrogenase complex. J Biol Chem. 1967 Mar 25;242(6):1356–1358. [PubMed] [Google Scholar]
  36. Hayashi S. I., Lin E. C. Product induction of glycerol kinase in Escherichia coli. J Mol Biol. 1965 Dec;14(2):515–521. doi: 10.1016/s0022-2836(65)80200-5. [DOI] [PubMed] [Google Scholar]
  37. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. 3. Isolation and properties of constitutive mutants. J Bacteriol. 1966 Mar;91(3):1161–1167. doi: 10.1128/jb.91.3.1161-1167.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. I. Synthesis of enzymes by the wild type. J Bacteriol. 1966 Mar;91(3):1140–1154. doi: 10.1128/jb.91.3.1140-1154.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Hegeman G. D. Synthesis of the enzymes of the mandelate pathway by Pseudomonas putida. II. Isolation and properties of blocked mutants. J Bacteriol. 1966 Mar;91(3):1155–1160. doi: 10.1128/jb.91.3.1155-1160.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  40. Hess B., Haeckel R., Brand K. FDP-activation of yeast pyruvate kinase. Biochem Biophys Res Commun. 1966 Sep 22;24(6):824–831. doi: 10.1016/0006-291x(66)90322-6. [DOI] [PubMed] [Google Scholar]
  41. Hsie A. W., Rickenberg H. V., Schulz D. W., Kirsch W. M. Steady-state concentrations of glucose-6-phosphate, 6-phosphogluconate, and reduced nicotinamide adenine dinucleotide phosphate in strains of Escherichia coli sensitive and resistant to catabolite repression. J Bacteriol. 1969 Jun;98(3):1407–1408. doi: 10.1128/jb.98.3.1407-1408.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  42. Jangaard N. O., Unkeless J., Atkinson D. E. The inhibition of citrate synthase by adenosine triphosphate. Biochim Biophys Acta. 1968 Jan 8;151(1):225–235. doi: 10.1016/0005-2744(68)90177-0. [DOI] [PubMed] [Google Scholar]
  43. KATZ J., WOOD H. G. The use of C14O2 yields from glucose-1- and -6-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1963 Feb;238:517–523. [PubMed] [Google Scholar]
  44. KATZ J., WOOD H. G. The use of glucose-C14 for the evaluation of the pathways of glucose metabolism. J Biol Chem. 1960 Aug;235:2165–2177. [PubMed] [Google Scholar]
  45. KEECH D. B., UTTER M. F. PYRUVATE CARBOXYLASE. II. PROPERTIES. J Biol Chem. 1963 Aug;238:2609–2614. [PubMed] [Google Scholar]
  46. KOCH J. P., HAYASHI S., LIN E. C. THE CONTROL OF DISSIMILATION OF GLYCEROL AND L-ALPHA-GLYCEROPHOSPHATE IN ESCHERICHIA COLI. J Biol Chem. 1964 Sep;239:3106–3108. [PubMed] [Google Scholar]
  47. KOIKE M., REED L. J., CARROLL W. R. alpha-Keto acid dehydrogenation complexes. IV. Resolution and reconstitution of the Escherichia coli pyruvate dehydrogenation complex. J Biol Chem. 1963 Jan;238:30–39. [PubMed] [Google Scholar]
  48. KREBS H. THE CROONIAN LECTURE, 1963. GLUCONEOGENESIS. Proc R Soc Lond B Biol Sci. 1964 Mar 17;159:545–564. doi: 10.1098/rspb.1964.0019. [DOI] [PubMed] [Google Scholar]
  49. Katsuki H., Takeo K., Kameda K., Tanaka S. Existence of two malic enzymes in Escherichia coli. Biochem Biophys Res Commun. 1967 May 5;27(3):331–336. doi: 10.1016/s0006-291x(67)80102-5. [DOI] [PubMed] [Google Scholar]
  50. Katz J., Rognstad R. The labeling of pentose phosphate from glucose-14C and estimation of the rates of transaldolase, transketolase, the contribution of the pentose cycle, and ribose phosphate synthesis. Biochemistry. 1967 Jul;6(7):2227–2247. doi: 10.1021/bi00859a046. [DOI] [PubMed] [Google Scholar]
  51. Kemp R. G., Krebs E. G. Binding of metabolites by phosphofructokinase. Biochemistry. 1967 Feb;6(2):423–434. doi: 10.1021/bi00854a009. [DOI] [PubMed] [Google Scholar]
  52. Kirschner K., Eigen M., Bittman R., Voigt B. The binding of nicotinamide-adenine dinucleotide to yeast d-glyceraldehyde-3-phosphate dehydrogenase: temperature-jump relaxation studies on the mechanism of an allosteric enzyme. Proc Natl Acad Sci U S A. 1966 Dec;56(6):1661–1667. doi: 10.1073/pnas.56.6.1661. [DOI] [PMC free article] [PubMed] [Google Scholar]
  53. Kirtley M. E., Koshland D. E., Jr Models for cooperative effects in proteins containing subunits. Effects of two interacting ligands. J Biol Chem. 1967 Sep 25;242(18):4192–4205. [PubMed] [Google Scholar]
  54. Kohiyama M., Cousin D., Ryter A., Jacob F. Mutants thermosensibles d'Escherichia coli K 12. I. Isolement et caractérisation rapide. Ann Inst Pasteur (Paris) 1966 Apr;110(4):465–486. [PubMed] [Google Scholar]
  55. LEIVE L. A NONSPECIFIC INCREASE IN PERMEABILITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Proc Natl Acad Sci U S A. 1965 Apr;53:745–750. doi: 10.1073/pnas.53.4.745. [DOI] [PMC free article] [PubMed] [Google Scholar]
  56. LEIVE L. ACTINOMYCIN SENSITIVITY IN ESCHERICHIA COLI PRODUCED BY EDTA. Biochem Biophys Res Commun. 1965 Jan 4;18:13–17. doi: 10.1016/0006-291x(65)90874-0. [DOI] [PubMed] [Google Scholar]
  57. LELOIR L. F., GOLDEMBERG S. H. Synthesis of glycogen from uridine diphosphate glucose in liver. J Biol Chem. 1960 Apr;235:919–923. [PubMed] [Google Scholar]
  58. LELOIR L. F., OLAVARRIA J. M., GOLDEMBERG S. H., CARMINATTI H. Biosynthesis of glycogen from uridine diphosphate glucose. Arch Biochem Biophys. 1959 Apr;81(2):508–520. doi: 10.1016/0003-9861(59)90232-2. [DOI] [PubMed] [Google Scholar]
  59. Lessie T. G., Neidhardt F. C. Formation and operation of the histidine-degrading pathway in Pseudomonas aeruginosa. J Bacteriol. 1967 Jun;93(6):1800–1810. doi: 10.1128/jb.93.6.1800-1810.1967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  60. MANDELSTAM J., JACOBY G. A. INDUCTION AND MULTI-SENSITIVE END-PRODUCT REPRESSION IN THE ENZYMIC PATHWAY DEGRADING MANDELATE IN PSEUDOMONAS FLUORESCENS. Biochem J. 1965 Mar;94:569–577. doi: 10.1042/bj0940569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  61. MONOD J., CHANGEUX J. P., JACOB F. Allosteric proteins and cellular control systems. J Mol Biol. 1963 Apr;6:306–329. doi: 10.1016/s0022-2836(63)80091-1. [DOI] [PubMed] [Google Scholar]
  62. MONOD J., WYMAN J., CHANGEUX J. P. ON THE NATURE OF ALLOSTERIC TRANSITIONS: A PLAUSIBLE MODEL. J Mol Biol. 1965 May;12:88–118. doi: 10.1016/s0022-2836(65)80285-6. [DOI] [PubMed] [Google Scholar]
  63. MacElroy R. D., Johnson E. J., Johnson M. K. Control of ATP-dependent CO2 fixation in extracts of Hydrogenomonas facilis: NADH regulation of phosphoribulokinase. Arch Biochem Biophys. 1969 Apr;131(1):272–275. doi: 10.1016/0003-9861(69)90131-3. [DOI] [PubMed] [Google Scholar]
  64. Maeba P., Sanwal B. D. Feedback inhibition of phosphoenolpyruvate carboxylase of Salmonella. Biochem Biophys Res Commun. 1965 Dec 9;21(5):503–508. doi: 10.1016/0006-291x(65)90412-2. [DOI] [PubMed] [Google Scholar]
  65. Maeba P., Sanwal B. D. Phosphoenolpyruvate carboxylase of Salmonella. Some chemical and allosteric properties. J Biol Chem. 1969 May 25;244(10):2549–2557. [PubMed] [Google Scholar]
  66. Maeba P., Sanwal B. D. The allosteric threonine deaminase of Salmonella. Kinetic model for the native enzyme. Biochemistry. 1966 Feb;5(2):525–536. doi: 10.1021/bi00866a019. [DOI] [PubMed] [Google Scholar]
  67. Maeba P., Sanwal B. D. The regulation of pyruvate kinase of Escherichia coli by fructose diphosphate and adenylic acid. J Biol Chem. 1968 Jan 25;243(2):448–450. [PubMed] [Google Scholar]
  68. Malcovati M., Kornberg H. L. Two types of pyruvate kinase in Escherichia coli K12. Biochim Biophys Acta. 1969 Apr 22;178(2):420–423. doi: 10.1016/0005-2744(69)90417-3. [DOI] [PubMed] [Google Scholar]
  69. Marr J. J., Weber M. M. Studies on the mechanism of purine nucleotide inhibition of a triphosphopyridine nucleotide-specific isocitrate dehydrogenase. J Biol Chem. 1968 Oct 10;243(19):4973–4979. [PubMed] [Google Scholar]
  70. Model P., Rittenberg D. Measurement of the activity of the hexose monophosphate pathway of glucose metabolism with the use of [18O]glucose. Variations in its activity in Escherichia coli with growth conditions. Biochemistry. 1967 Jan;6(1):69–80. doi: 10.1021/bi00853a013. [DOI] [PubMed] [Google Scholar]
  71. NIERLICH D. P., MAGASANIK B. REGULATION OF PURINE RIBONUCLEOTIDE SYNTHESIS BY END PRODUCT INHIBITION. THE EFFECT OF ADENINE AND GUANINE RIBONUCLEOTIDES ON THE 5'-PHOSPHORIBOSYL-PYROPHOSPHATE AMIDOTRANSFERASE OF AEROBACTER AEROGENES. J Biol Chem. 1965 Jan;240:358–365. [PubMed] [Google Scholar]
  72. Nakazawa A., Hayaishi O. On the mechanism of activation of L-threonine deaminase from Clostridium tetanomorphum by adenosine diphosphate. J Biol Chem. 1967 Mar 25;242(6):1146–1154. [PubMed] [Google Scholar]
  73. Nichol L. W., Jackson W. J., Winzor D. J. A theoretical study of the binding of small molecules to a polymerizing protein system. A model for allosteric effects. Biochemistry. 1967 Aug;6(8):2449–2456. doi: 10.1021/bi00860a022. [DOI] [PubMed] [Google Scholar]
  74. Nishikido T., Izui K., Iwatani A., Katsuki H., Tanaka S. Control of carbon dioxide fixation in Escherichia coli by compounds related to TCA cycle. J Biochem. 1968 Apr;63(4):532–541. doi: 10.1093/oxfordjournals.jbchem.a128807. [DOI] [PubMed] [Google Scholar]
  75. O'Donovan G. A., Ingraham J. L. Cold-sensitive mutants of Escherichia coli resulting from increased feedback inhibition. Proc Natl Acad Sci U S A. 1965 Aug;54(2):451–457. doi: 10.1073/pnas.54.2.451. [DOI] [PMC free article] [PubMed] [Google Scholar]
  76. PARDEE A. B., YATES R. A. Control of pyrimidine biosynthesis in Escherichia coli by a feed-back mechanism. J Biol Chem. 1956 Aug;221(2):757–770. [PubMed] [Google Scholar]
  77. PAULUS H., GRAY E. MULTIVALENT FEEDBACK INHIBITION OF ASPARTOKINASE IN BACILLUS POLYMYXA. J Biol Chem. 1964 Nov;239:PC4008–PC4009. [PubMed] [Google Scholar]
  78. PORTER J. W., WAKIL S. J., TIETZ A., JACOB M. I., GIBSON D. M. Studies on the mechanism of fatty acid synthesis. II. Cofactor requirements of the soluble pigeon liver system. Biochim Biophys Acta. 1957 Jul;25(1):35–41. doi: 10.1016/0006-3002(57)90413-4. [DOI] [PubMed] [Google Scholar]
  79. Parvin R., Atkinson D. E. Purification and some properties of yeast citrate synthase. Arch Biochem Biophys. 1968 Nov;128(2):528–533. doi: 10.1016/0003-9861(68)90060-x. [DOI] [PubMed] [Google Scholar]
  80. Preiss J., Greenberg E. Biosynthesis of bacterial glycogen. 3. The adenosine diphosphate-glucose: alpha-4-glucosyl transferase of Escherichia coli B. Biochemistry. 1965 Nov;4(11):2328–2334. doi: 10.1021/bi00887a010. [DOI] [PubMed] [Google Scholar]
  81. Preiss J., Shen L., Greenberg E., Gentner N. Biosynthesis of bacterial glycogen. IV. Activation and inhibition of the adenosine diphosphate glucose pyrophosphorylase of Escherichia coli B. Biochemistry. 1966 Jun;5(6):1833–1845. doi: 10.1021/bi00870a008. [DOI] [PubMed] [Google Scholar]
  82. Prevost C., Moses V. Pool sizes of metabolic intermediates and their relation to glucose repression of beta-galactosidase synthesis in Escherichia coli. Biochem J. 1967 May;103(2):349–357. doi: 10.1042/bj1030349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  83. RICHMOND M. H., MALLOE O. The rate of growth of Salmonella typhimurium with individual carbon sources related to glucose metabolism or to the Krebs cycle. J Gen Microbiol. 1962 Feb;27:285–297. doi: 10.1099/00221287-27-2-285. [DOI] [PubMed] [Google Scholar]
  84. Rindt K. P., Ohmann E. NADH and AMP as allosteric effectors of ribulose-5-phosphate kinase in Rhodopseudomonas spheroides. Biochem Biophys Res Commun. 1969 Aug 7;36(3):357–364. doi: 10.1016/0006-291x(69)90572-5. [DOI] [PubMed] [Google Scholar]
  85. SANWAL B. D., STACHOW C. S. ALLOSTERIC ACTIVATION OF NICOTINAMIDE-ADENINE DINUCLEOTIDE SPECIFIC ISOCITRATE DEHYDROGENASE OF NEUROSPORA. Biochim Biophys Acta. 1965 Jan;96:28–44. doi: 10.1016/0005-2787(65)90606-4. [DOI] [PubMed] [Google Scholar]
  86. SANWAL B. D., STACHOW C. S., COOK R. A. A KINETIC MODEL FOR THE MECHANISM OF ALLOSTERIC ACTIVATION OF NICOTINAMIDE-ADENINE DINUCLEOTIDE-SPECIFIC ISOCRITIC DEHYDROGENASE. Biochemistry. 1965 Mar;4:410–421. doi: 10.1021/bi00879a006. [DOI] [PubMed] [Google Scholar]
  87. SANWAL B. D., ZINK M. W., STACHOW C. S. CONTROL OF DPN-SPECIFIC ISOCITRIC DEHYDROGENASE ACTIVITY BY PRECURSOR ACTIVATION AND END PRODUCT INHIBITION. Biochem Biophys Res Commun. 1963 Aug 20;12:510–515. doi: 10.1016/0006-291x(63)90325-5. [DOI] [PubMed] [Google Scholar]
  88. SHEN L., PREISS J. BIOSYNTHESIS OF BACTERIAL GLYCOGEN. I. PURIFICATION AND PROPERTIES OF THE ADENOSINE DIPHOSPHOGLUCOSE PYROPHOSPHORYLASE OF ARTHROBACTER SPECIES NRRL B1973. J Biol Chem. 1965 Jun;240:2334–2340. [PubMed] [Google Scholar]
  89. Sanwal B. D., Maeba P., Cook R. A. Interaction of macroions and dioxane with the allosteric phosphoenolpyruvate carboxylase. J Biol Chem. 1966 Nov 25;241(22):5177–5182. [PubMed] [Google Scholar]
  90. Sanwal B. D., Maeba P. Phosphoenolpyruvate carboxylase: activation by nucleotides as a possible compensatory feedback effect. J Biol Chem. 1966 Oct 10;241(19):4557–4562. [PubMed] [Google Scholar]
  91. Sanwal B. D., Maeba P. Regulation of the activity of phosphoenolypyruvate carboxylase by fructose diphosphate. Biochem Biophys Res Commun. 1966 Jan 24;22(2):194–199. doi: 10.1016/0006-291x(66)90431-1. [DOI] [PubMed] [Google Scholar]
  92. Sanwal B. D. Regulatory characteristics of the diphosphopyridine nucleotide-specific malic enzyme of Escherichia coli. J Biol Chem. 1970 Mar 10;245(5):1212–1216. [PubMed] [Google Scholar]
  93. Sanwal B. D., Smando R. Malic enzyme of Escherichia coli. Diversity of the effectors controlling enzyme activity. J Biol Chem. 1969 Apr 10;244(7):1817–1823. [PubMed] [Google Scholar]
  94. Sanwal B. D., Smando R. Malic enzyme of Escherichia coli. Possible mechanism for allosteric effects. J Biol Chem. 1969 Apr 10;244(7):1824–1830. [PubMed] [Google Scholar]
  95. Sanwal B. D., Smando R. Regulatory roles of cyclic 3',5'-AMP in bacteria: control of malic enzyme of Escherichia coli. Biochem Biophys Res Commun. 1969 May 22;35(4):486–491. doi: 10.1016/0006-291x(69)90372-6. [DOI] [PubMed] [Google Scholar]
  96. Sanwal B. D., Wright J. A., Smando R. Allosteric control of the activity of malic enzyme in Escherichia coli. Biochem Biophys Res Commun. 1968 May 23;31(4):623–627. doi: 10.1016/0006-291x(68)90524-x. [DOI] [PubMed] [Google Scholar]
  97. Schwartz E. R., Old L. O., Reed L. J. Regulatory properties of pyruvate dehydrogenase from Escherichia coli. Biochem Biophys Res Commun. 1968 May 10;31(3):495–500. doi: 10.1016/0006-291x(68)90504-4. [DOI] [PubMed] [Google Scholar]
  98. Stadtman E. R. Allosteric regulation of enzyme activity. Adv Enzymol Relat Areas Mol Biol. 1966;28:41–154. doi: 10.1002/9780470122730.ch2. [DOI] [PubMed] [Google Scholar]
  99. Suzuki T., Abiko Y., Shimizu M. Activation and inhibition of purified phosphotransacetylase of Escherichia coli B by pyruvate and by NADH2 and certain nucleotides. Biochem Biophys Res Commun. 1969 Apr 10;35(1):102–108. doi: 10.1016/0006-291x(69)90488-4. [DOI] [PubMed] [Google Scholar]
  100. Sweeny J. R., Fisher J. R. An alternative to allosterism and cooperativity in the interpretation of enzyme kinetic data. Biochemistry. 1968 Feb;7(2):561–565. doi: 10.1021/bi00842a008. [DOI] [PubMed] [Google Scholar]
  101. TAKETA K., POGELL B. M. ALLOSTERIC INHIBITION OF RAT LIVER FRUCTOSE 1,6-DIPHOSPHATASE BY ADENOSINE 5'-MONOPHOSPHATE. J Biol Chem. 1965 Feb;240:651–662. [PubMed] [Google Scholar]
  102. THEODORE T. S., ENGLESBERG E. MUTANT OF SALMONELLA TYPHIMURIUM DEFICIENT IN THE CARBON DIOXIDE-FIXING ENZYME PHOSPHOENOLPYRUVIC CARBOXYLASE. J Bacteriol. 1964 Oct;88:946–955. doi: 10.1128/jb.88.4.946-955.1964. [DOI] [PMC free article] [PubMed] [Google Scholar]
  103. Takeo K., Murai T., Nagai J., Katsuki H. Allosteric activation of DPN-linked malic enzyme from Escherichia coli by aspartate. Biochem Biophys Res Commun. 1967 Dec 15;29(5):717–722. doi: 10.1016/0006-291x(67)90276-8. [DOI] [PubMed] [Google Scholar]
  104. Tanaka T., Harano Y., Morimura H., Mori R. Evidence for the presence of two types of pyruvate kinase in rat liver. Biochem Biophys Res Commun. 1965 Oct 8;21(1):55–60. doi: 10.1016/0006-291x(65)90425-0. [DOI] [PubMed] [Google Scholar]
  105. Tanaka T., Harano Y., Sue F., Morimura H. Crystallization, characterization and metabolic regulation of two types of pyruvate kinase isolated from rat tissues. J Biochem. 1967 Jul;62(1):71–91. doi: 10.1093/oxfordjournals.jbchem.a128639. [DOI] [PubMed] [Google Scholar]
  106. Tarmy E. M., Kaplan N. O. Kinetics of Escherichia coli B D-lactate dehydrogenase and evidence for pyruvate-controlled change in conformation. J Biol Chem. 1968 May 25;243(10):2587–2596. [PubMed] [Google Scholar]
  107. Taylor C. B., Bailey E. Activation of liver pyruvate kinase by fructose 1,6-diphosphate. Biochem J. 1967 Feb;102(2):32C–33C. doi: 10.1042/bj1020032c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  108. Truffa-Bachi P., Cohen G. N. Some aspects of amino acid biosynthesis in microorganisms. Annu Rev Biochem. 1968;37:79–108. doi: 10.1146/annurev.bi.37.070168.000455. [DOI] [PubMed] [Google Scholar]
  109. UMBARGER H. E., BROWN B. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J Bacteriol. 1957 Jan;73(1):105–112. doi: 10.1128/jb.73.1.105-112.1957. [DOI] [PMC free article] [PubMed] [Google Scholar]
  110. UMBARGER H. E. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science. 1956 May 11;123(3202):848–848. doi: 10.1126/science.123.3202.848. [DOI] [PubMed] [Google Scholar]
  111. UTTER M. F., KEECH D. B. PYRUVATE CARBOXYLASE. I. NATURE OF THE REACTION. J Biol Chem. 1963 Aug;238:2603–2608. [PubMed] [Google Scholar]
  112. Uyeda K., Racker E. Regulatory mechanisms in carbohydrate metabolism. VII. Hexokinase and phosphofructokinase. J Biol Chem. 1965 Dec;240(12):4682–4688. [PubMed] [Google Scholar]
  113. WOLIN M. J. FRUCTOSE-1,6-DIPHOSPHATE REQUIREMENT OF STREPTOCOCCAL LACTIC DEHYDROGENASES. Science. 1964 Nov 6;146(3645):775–777. doi: 10.1126/science.146.3645.775. [DOI] [PubMed] [Google Scholar]
  114. WORCEL A., GOLDMAN D. S., CLELAND W. W. AN ALLOSTERIC REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE OXIDASE FROM MYCOBACTERIUM TUBERCULOSIS. J Biol Chem. 1965 Aug;240:3399–3407. [PubMed] [Google Scholar]
  115. Weitzman P. D. Allosteric fine control of citrate synthase in Escherichia coli. Biochim Biophys Acta. 1967 Jul 11;139(2):526–528. doi: 10.1016/0005-2744(67)90062-9. [DOI] [PubMed] [Google Scholar]
  116. Weitzman P. D.J., Dunmore P. Regulation of citrate synthase activity by alpha-ketoglutarate. Metabolic and taxonomic significance. FEBS Lett. 1969 Jun;3(4):265–267. doi: 10.1016/0014-5793(69)80154-7. [DOI] [PubMed] [Google Scholar]
  117. Weitzman P. D., Jones D. Regulation of citrate synthase and microbial taxonomy. Nature. 1968 Jul 20;219(5151):270–272. doi: 10.1038/219270a0. [DOI] [PubMed] [Google Scholar]
  118. Weitzman P. D. Reduced nicotinamide-adenine dinucleotide as an allosteric effector of citrate-synthase activity in Escherichia coli. Biochem J. 1966 Dec;101(3):44C–45C. doi: 10.1042/bj1010044c. [DOI] [PMC free article] [PubMed] [Google Scholar]
  119. Whiteley H. R., Tahara M. Threonine deaminase of Clostridium tetanomorphum. I. Purification and properties. J Biol Chem. 1966 Nov 10;241(21):4881–4889. [PubMed] [Google Scholar]
  120. Williams V. R., Lartigue D. J. Quaternary structure and certain allosteric properties of aspartase. J Biol Chem. 1967 Jun 25;242(12):2973–2978. [PubMed] [Google Scholar]
  121. Williams V. R., Scott R. M. Nucleotide effectors of aspartase. Biochem Biophys Res Commun. 1968 May 10;31(3):433–437. doi: 10.1016/0006-291x(68)90495-6. [DOI] [PubMed] [Google Scholar]
  122. Wittenberger C. L., Fulco J. G. Purification and allosteric properties of a nicotinamide adenine dinucleotide-linked D(-)-specific lactate dehydrogenase from Butyribacterium rettgeri. J Biol Chem. 1967 Jun 25;242(12):2917–2924. [PubMed] [Google Scholar]
  123. Wright J. A., Maeba P., Sanwal B. D. Allosteric regulation of the activity of citrate snythetase of Escherichia coli by alpha-ketoglutarate. Biochem Biophys Res Commun. 1967 Oct 11;29(1):34–38. doi: 10.1016/0006-291x(67)90536-0. [DOI] [PubMed] [Google Scholar]
  124. Wright J. A., Sanwal B. D. Regulatory mechanisms involving nicotinamide adenine nucleotides as all teric effectors. II. Control of phosphoenolpyruvate carboxykinase. J Biol Chem. 1969 Apr 10;244(7):1838–1845. [PubMed] [Google Scholar]
  125. Zwaig N., Lin E. C. Feedback inhibition of glycerol kinase, a catabolic enzyme in Escherichia coli. Science. 1966 Aug 12;153(3737):755–757. doi: 10.1126/science.153.3737.755. [DOI] [PubMed] [Google Scholar]

Articles from Bacteriological Reviews are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES