Skip to main content
Applied Microbiology logoLink to Applied Microbiology
. 1972 Aug;24(2):184–190. doi: 10.1128/am.24.2.184-190.1972

Distribution of Enzymes Forming Polysaccharide from Sucrose and the Composition of Extracellular Polysaccharide Synthesized by Streptococcus mutans

Stanley A Robrish a, William Reid a,1, Micah I Krichevsky a
PMCID: PMC380578  PMID: 5071647

Abstract

The distribution of polysaccharide-forming activity from sucrose was investigated in cultures of three strains of Streptococcus mutans by using an assay which conveniently determines total polysaccharide. The enzymatic activity for polysaccharide formation from sucrose is almost exclusively extracellular. The ratio of the fructan to glucan in the polysaccharide differs among the three strains investigated. The enzymatic activity for the formation of polysaccharide from sucrose has been shown to be bound to the cell-free polymer itself.

Full text

PDF
189

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BAILEY R. W., OXFORD A. E. A quantitative study of the production of dextran from sucrose by rumen strains of Streptococcus bovis. J Gen Microbiol. 1958 Aug;19(1):130–145. doi: 10.1099/00221287-19-1-130. [DOI] [PubMed] [Google Scholar]
  2. BAILEY R. W. Transglucosidase activity of rumen strains of Streptococcus bovis. 2. Isolation and properties of dextransucrase. Biochem J. 1959 May;72(1):42–49. doi: 10.1042/bj0720042. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BAILEY R. W. Transglucosidase activity of rumen strains of Streptococcus bovis; structure of the dextran produced from sucrose. Biochem J. 1959 Jan;71(1):23–26. doi: 10.1042/bj0710023. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Carlsson J. A levansucrase from Streptococcus mutans. Caries Res. 1970;4(2):97–113. doi: 10.1159/000259632. [DOI] [PubMed] [Google Scholar]
  5. Fitzgerlad R. J. Dental caries research in gnotobiotic animals. Caries Res. 1968;2(2):139–146. doi: 10.1159/000259552. [DOI] [PubMed] [Google Scholar]
  6. Gibbons R. J., Fitzgerald R. J. Dextran-induced agglutination of Streptococcus mutans, and its potential role in the formation of microbial dental plaques. J Bacteriol. 1969 May;98(2):341–346. doi: 10.1128/jb.98.2.341-346.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gibbons R. J., Nygaard M. Synthesis of insoluble dextran and its significance in the formation of gelatinous deposits by plaque-forming streptococci. Arch Oral Biol. 1968 Oct;13(10):1249–1262. doi: 10.1016/0003-9969(68)90081-2. [DOI] [PubMed] [Google Scholar]
  8. Guggenheim B. Enzymatic hydrolysis and structure of water-insoluble glucan produced by glucosyltransferases from a strain of streptococcus mutans. Helv Odontol Acta. 1970 Nov;14(Suppl):89+–89+. [PubMed] [Google Scholar]
  9. Guggenheim B., Newbrun E. Extracellular glucosyltransferase activity of an HS strain of Streptococcus mutans. Helv Odontol Acta. 1969 Oct;13(2):84–97. [PubMed] [Google Scholar]
  10. Guggenheim B., Schroeder H. E. Biochemical and morphological aspects of extracellular polysaccharides produced by cariogenic streptococci. Helv Odontol Acta. 1967 Oct;11(2):131–152. [PubMed] [Google Scholar]
  11. Guggenheim B. Streptococci of dental plaques. Caries Res. 1968;2(2):147–163. doi: 10.1159/000259553. [DOI] [PubMed] [Google Scholar]
  12. OXFORD A. E. The nutritional requirements of rumen strains of Streptococcus bovis considered in relation to dextran synthesis from sucrose. J Gen Microbiol. 1958 Dec;19(3):617–623. doi: 10.1099/00221287-19-3-617. [DOI] [PubMed] [Google Scholar]
  13. Robrish S. A., Krichevsky M. I. Acid production from glucose and sucrose by growing cultures of caries-conducive streptococci. J Dent Res. 1972 May-Jun;51(3):734–739. doi: 10.1177/00220345720510030801. [DOI] [PubMed] [Google Scholar]
  14. Robrish S. A., LeRoy A. F., Chassy B. M., Wilson J. J., Krichevsky M. I. Use of a fiber optic probe for spectral measurements and the continuous recording of the turbidity of growing microbial cultures. Appl Microbiol. 1971 Feb;21(2):278–287. doi: 10.1128/am.21.2.278-287.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Tanzer J. M., Chassy B. M., Krichevsky M. I. Sucrose metabolism by Streptococcus mutans, SL-I. Biochim Biophys Acta. 1971 Feb 28;261(2):379–387. doi: 10.1016/0304-4165(72)90062-1. [DOI] [PubMed] [Google Scholar]
  16. WILKINSON J. F. The extracellualr polysaccharides of bacteria. Bacteriol Rev. 1958 Mar;22(1):46–73. doi: 10.1128/br.22.1.46-73.1958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. WRIGHT D. E. The metabolism of carbon dioxide by Streptococcus bovis. J Gen Microbiol. 1960 Jun;22:713–725. doi: 10.1099/00221287-22-3-713. [DOI] [PubMed] [Google Scholar]
  18. van Houte J., de Moor C. E., Jansen H. M. Synthesis of iodophilic polysaccharide by human oral streptococci. Arch Oral Biol. 1970 Mar;15(3):263–266. doi: 10.1016/0003-9969(70)90084-1. [DOI] [PubMed] [Google Scholar]

Articles from Applied Microbiology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES