Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Oct 1;93(20):10642–10646. doi: 10.1073/pnas.93.20.10642

Mimicry of the calcium-induced conformational state of troponin C by low temperature under pressure.

D Foguel 1, M C Suarez 1, C Barbosa 1, J J Rodrigues Jr 1, M M Sorenson 1, L B Smillie 1, J L Silva 1
PMCID: PMC38207  PMID: 8855232

Abstract

Calcium binding to the N-domain of troponin C initiates a series of conformational changes that lead to muscle contraction. Calcium binding provides the free energy for a hydrophobic region in the core of N-domain to assume a more open configuration. Fluorescence measurements on a tryptophan mutant (F29W) show that a similar conformational change occurs in the absence of Ca2+ when the temperature is lowered under pressure. The conformation induced by subzero temperatures binds the hydrophobic probe bis-aminonaphthalene sulfonate, and the tryptophan has the same fluorescence lifetime (7 ns) as in the Ca2+-bound form. The decrease in volume (delta V = -25.4 ml/mol) corresponds to an increase in surface area. Thermodynamic measurements suggest an enthalpy-driven conformational change that leads to an intermediate with an exposed N-domain core and a high affinity for Ca2+.

Full text

PDF
10646

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alcala J. R., Gratton E., Prendergast F. G. Fluorescence lifetime distributions in proteins. Biophys J. 1987 Apr;51(4):597–604. doi: 10.1016/S0006-3495(87)83384-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ebashi S., Endo M. Calcium ion and muscle contraction. Prog Biophys Mol Biol. 1968;18:123–183. doi: 10.1016/0079-6107(68)90023-0. [DOI] [PubMed] [Google Scholar]
  3. Farah C. S., Reinach F. C. The troponin complex and regulation of muscle contraction. FASEB J. 1995 Jun;9(9):755–767. doi: 10.1096/fasebj.9.9.7601340. [DOI] [PubMed] [Google Scholar]
  4. Foguel D., Silva J. L. Cold denaturation of a repressor-operator complex: the role of entropy in protein-DNA recognition. Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8244–8247. doi: 10.1073/pnas.91.17.8244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Foguel D., Teschke C. M., Prevelige P. E., Jr, Silva J. L. Role of entropic interactions in viral capsids: single amino acid substitutions in P22 bacteriophage coat protein resulting in loss of capsid stability. Biochemistry. 1995 Jan 31;34(4):1120–1126. doi: 10.1021/bi00004a003. [DOI] [PubMed] [Google Scholar]
  6. Foguel D., Weber G. Pressure-induced dissociation and denaturation of allophycocyanin at subzero temperatures. J Biol Chem. 1995 Dec 1;270(48):28759–28766. doi: 10.1074/jbc.270.48.28759. [DOI] [PubMed] [Google Scholar]
  7. Fujimori K., Sorenson M., Herzberg O., Moult J., Reinach F. C. Probing the calcium-induced conformational transition of troponin C with site-directed mutants. Nature. 1990 May 10;345(6271):182–184. doi: 10.1038/345182a0. [DOI] [PubMed] [Google Scholar]
  8. Gagné S. M., Tsuda S., Li M. X., Chandra M., Smillie L. B., Sykes B. D. Quantification of the calcium-induced secondary structural changes in the regulatory domain of troponin-C. Protein Sci. 1994 Nov;3(11):1961–1974. doi: 10.1002/pro.5560031108. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Gagné S. M., Tsuda S., Li M. X., Smillie L. B., Sykes B. D. Structures of the troponin C regulatory domains in the apo and calcium-saturated states. Nat Struct Biol. 1995 Sep;2(9):784–789. doi: 10.1038/nsb0995-784. [DOI] [PubMed] [Google Scholar]
  10. Grabarek Z., Tan R. Y., Wang J., Tao T., Gergely J. Inhibition of mutant troponin C activity by an intra-domain disulphide bond. Nature. 1990 May 10;345(6271):132–135. doi: 10.1038/345132a0. [DOI] [PubMed] [Google Scholar]
  11. Grabarek Z., Tao T., Gergely J. Molecular mechanism of troponin-C function. J Muscle Res Cell Motil. 1992 Aug;13(4):383–393. doi: 10.1007/BF01738034. [DOI] [PubMed] [Google Scholar]
  12. Greaser M. L., Gergely J. Reconstitution of troponin activity from three protein components. J Biol Chem. 1971 Jul 10;246(13):4226–4233. [PubMed] [Google Scholar]
  13. Gross M., Jaenicke R. Proteins under pressure. The influence of high hydrostatic pressure on structure, function and assembly of proteins and protein complexes. Eur J Biochem. 1994 Apr 15;221(2):617–630. doi: 10.1111/j.1432-1033.1994.tb18774.x. [DOI] [PubMed] [Google Scholar]
  14. Heizmann C. W., Hunziker W. Intracellular calcium-binding proteins: more sites than insights. Trends Biochem Sci. 1991 Mar;16(3):98–103. doi: 10.1016/0968-0004(91)90041-s. [DOI] [PubMed] [Google Scholar]
  15. Herzberg O., James M. N. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature. 1985 Feb 21;313(6004):653–659. doi: 10.1038/313653a0. [DOI] [PubMed] [Google Scholar]
  16. Herzberg O., Moult J., James M. N. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem. 1986 Feb 25;261(6):2638–2644. [PubMed] [Google Scholar]
  17. Jonas J., Jonas A. High-pressure NMR spectroscopy of proteins and membranes. Annu Rev Biophys Biomol Struct. 1994;23:287–318. doi: 10.1146/annurev.bb.23.060194.001443. [DOI] [PubMed] [Google Scholar]
  18. KAUZMANN W. Some factors in the interpretation of protein denaturation. Adv Protein Chem. 1959;14:1–63. doi: 10.1016/s0065-3233(08)60608-7. [DOI] [PubMed] [Google Scholar]
  19. Lakowicz J. R., Laczko G., Cherek H., Gratton E., Limkeman M. Analysis of fluorescence decay kinetics from variable-frequency phase shift and modulation data. Biophys J. 1984 Oct;46(4):463–477. doi: 10.1016/S0006-3495(84)84043-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Li M. X., Chandra M., Pearlstone J. R., Racher K. I., Trigo-Gonzalez G., Borgford T., Kay C. M., Smillie L. B. Properties of isolated recombinant N and C domains of chicken troponin C. Biochemistry. 1994 Feb 1;33(4):917–925. doi: 10.1021/bi00170a010. [DOI] [PubMed] [Google Scholar]
  21. Li M. X., Gagné S. M., Tsuda S., Kay C. M., Smillie L. B., Sykes B. D. Calcium binding to the regulatory N-domain of skeletal muscle troponin C occurs in a stepwise manner. Biochemistry. 1995 Jul 4;34(26):8330–8340. doi: 10.1021/bi00026a014. [DOI] [PubMed] [Google Scholar]
  22. Pearlstone J. R., Borgford T., Chandra M., Oikawa K., Kay C. M., Herzberg O., Moult J., Herklotz A., Reinach F. C., Smillie L. B. Construction and characterization of a spectral probe mutant of troponin C: application to analyses of mutants with increased Ca2+ affinity. Biochemistry. 1992 Jul 21;31(28):6545–6553. doi: 10.1021/bi00143a026. [DOI] [PubMed] [Google Scholar]
  23. Potter J. D., Hsu F. J., Pownall H. J. Thermodynamics of Ca2+ binding to troponin-C. J Biol Chem. 1977 Apr 10;252(7):2452–2454. [PubMed] [Google Scholar]
  24. Privalov P. L. Cold denaturation of proteins. Crit Rev Biochem Mol Biol. 1990;25(4):281–305. doi: 10.3109/10409239009090612. [DOI] [PubMed] [Google Scholar]
  25. Robinson C. R., Sligar S. G. Hydrostatic and osmotic pressure as tools to study macromolecular recognition. Methods Enzymol. 1995;259:395–427. doi: 10.1016/0076-6879(95)59054-4. [DOI] [PubMed] [Google Scholar]
  26. Rosen C. G., Weber G. Dimer formation from 1-amino-8-naphthalenesulfonate catalyzed by bovine serum albumin. A new fluorescent molecule with exceptional binding properties. Biochemistry. 1969 Oct;8(10):3915–3920. doi: 10.1021/bi00838a006. [DOI] [PubMed] [Google Scholar]
  27. Satyshur K. A., Rao S. T., Pyzalska D., Drendel W., Greaser M., Sundaralingam M. Refined structure of chicken skeletal muscle troponin C in the two-calcium state at 2-A resolution. J Biol Chem. 1988 Feb 5;263(4):1628–1647. [PubMed] [Google Scholar]
  28. Silva J. L., Foguel D., Da Poian A. T., Prevelige P. E. The use of hydrostatic pressure as a tool to study viruses and other macromolecular assemblages. Curr Opin Struct Biol. 1996 Apr;6(2):166–175. doi: 10.1016/s0959-440x(96)80071-6. [DOI] [PubMed] [Google Scholar]
  29. Silva J. L., Silveira C. F., Correia Júnior A., Pontes L. Dissociation of a native dimer to a molten globule monomer. Effects of pressure and dilution on the association equilibrium of arc repressor. J Mol Biol. 1992 Jan 20;223(2):545–555. doi: 10.1016/0022-2836(92)90669-b. [DOI] [PubMed] [Google Scholar]
  30. Silva J. L., Weber G. Pressure stability of proteins. Annu Rev Phys Chem. 1993;44:89–113. doi: 10.1146/annurev.pc.44.100193.000513. [DOI] [PubMed] [Google Scholar]
  31. Sundaralingam M., Bergstrom R., Strasburg G., Rao S. T., Roychowdhury P., Greaser M., Wang B. C. Molecular structure of troponin C from chicken skeletal muscle at 3-angstrom resolution. Science. 1985 Feb 22;227(4689):945–948. doi: 10.1126/science.3969570. [DOI] [PubMed] [Google Scholar]
  32. da Silva A. C., de Araujo A. H., Herzberg O., Moult J., Sorenson M., Reinach F. C. Troponin-C mutants with increased calcium affinity. Eur J Biochem. 1993 Apr 1;213(1):599–604. doi: 10.1111/j.1432-1033.1993.tb17799.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES