Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Mar;76(3):1122–1125. doi: 10.1073/pnas.76.3.1122

Mutations reducing the activity of c17, a promoter of phage lambda formed by a tandem duplication.

M A Mozola, D I Friedman, C L Crawford, D L Wulff, H Shimatake, M Rosenberg
PMCID: PMC383201  PMID: 375226

Abstract

We report the isolation of four independently selected mutations (scs) in the c17 promoter of phage lambda that reduce or eliminate the promoter activity. The c17 promoter is not normally present in lambda, and has been shown to be generated by a tandem duplication which creates a "Pribnow Box," a heptamer sequence implicated in promoter activity. This sequence is located upstream from the site of transcription initiation and is present, with some variation, in all promoters whose sequences have been determined. Analysis of the c17 duplications carrying the scs mutations reveals that three of these mutants carry single base-pair changes in the most highly conserved base pairs of the Pribnow Box and that the other mutation is a reversion to the wild type sequence in this region (i.e., a loss of the duplicated base pairs).

Full text

PDF
1124

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson R. P., Roth J. R. Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol. 1977;31:473–505. doi: 10.1146/annurev.mi.31.100177.002353. [DOI] [PubMed] [Google Scholar]
  2. Bennett G. N., Schweingruber M. E., Brown K. D., Squires C., Yanofsky C. Nucleotide sequence of region preceding trp mRNA initiation site and its role in promoter and operator function. Proc Natl Acad Sci U S A. 1976 Jul;73(7):2351–2355. doi: 10.1073/pnas.73.7.2351. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dhar R., Weissman S. M., Zain B. S., Pan J., Lewis A. M., Jr The nucleotide sequence preceding an RNA polymerase initiation site on SV40 DNA. Part 2. The sequence of the early strand transcript. Nucleic Acids Res. 1974 Apr;1(4):595–611. doi: 10.1093/nar/1.4.595. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Dickson R. C., Abelson J., Barnes W. M., Reznikoff W. S. Genetic regulation: the Lac control region. Science. 1975 Jan 10;187(4171):27–35. doi: 10.1126/science.1088926. [DOI] [PubMed] [Google Scholar]
  5. Echols H., Green L. Establishment and maintenance of repression by bacteriophage lambda: the role of the cI, cII, and c3 proteins. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2190–2194. doi: 10.1073/pnas.68.9.2190. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Fowler R. G., Degnen G. E., Cox E. C. Mutational specificity of a conditional Escherichia coli mutator, mutD5. Mol Gen Genet. 1974;133(3):179–191. doi: 10.1007/BF00267667. [DOI] [PubMed] [Google Scholar]
  7. Friedman D. I., Baron L. S. Genetic characterization of a bacterial locus involved in the activity of the N function of phage lambda. Virology. 1974 Mar;58(1):141–148. doi: 10.1016/0042-6822(74)90149-4. [DOI] [PubMed] [Google Scholar]
  8. Friedman D. I., Jolly C. A., Mural R. J., Ponce-Campos R., Baumann M. F. Growth of lambda variants with added or altered promoters in N-limiting bacterial mutants: evidence that an N recognition site lies in the PR promoter. Virology. 1976 May;71(1):61–73. doi: 10.1016/0042-6822(76)90094-5. [DOI] [PubMed] [Google Scholar]
  9. Friedman D. I., Jolly C. T., Mural R. J. Interference with the expression of the N gene function of phage lambda in a mutant of Escherichia coli. Virology. 1973 Jan;51(1):216–226. doi: 10.1016/0042-6822(73)90381-4. [DOI] [PubMed] [Google Scholar]
  10. Herskowitz I. Control of gene expression in bacteriophage lambda. Annu Rev Genet. 1973;7:289–324. doi: 10.1146/annurev.ge.07.120173.001445. [DOI] [PubMed] [Google Scholar]
  11. Maniatis T., Ptashne M., Backman K., Kield D., Flashman S., Jeffrey A., Maurer R. Recognition sequences of repressor and polymerase in the operators of bacteriophage lambda. Cell. 1975 Jun;5(2):109–113. doi: 10.1016/0092-8674(75)90018-5. [DOI] [PubMed] [Google Scholar]
  12. Maxam A. M., Gilbert W. A new method for sequencing DNA. Proc Natl Acad Sci U S A. 1977 Feb;74(2):560–564. doi: 10.1073/pnas.74.2.560. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Musso R. E., Di Lauro R., Adhya S., de Crombrugghe B. Dual control for transcription of the galactose operon by cyclic AMP and its receptor protein at two interspersed promoters. Cell. 1977 Nov;12(3):847–854. doi: 10.1016/0092-8674(77)90283-5. [DOI] [PubMed] [Google Scholar]
  14. Ordal G. W., Kaiser A. D. Mutations in the right operator of bacteriophage lambda: evidence for operator-promoter interpenetration. J Mol Biol. 1973 Oct 5;79(4):709–722. doi: 10.1016/0022-2836(73)90073-9. [DOI] [PubMed] [Google Scholar]
  15. Packman S., Sly W. S. Constitutive lambda DNA replication by lambda-C17, a regulatory mutant related to virulence. Virology. 1968 Apr;34(4):778–789. doi: 10.1016/0042-6822(68)90099-8. [DOI] [PubMed] [Google Scholar]
  16. Post L. E., Arfsten A. E., Nomura M., Jaskunas S. R. Isolation and characterization of a promoter mutant in the str ribosomal protein operon in E. coli. Cell. 1978 Sep;15(1):231–236. doi: 10.1016/0092-8674(78)90097-1. [DOI] [PubMed] [Google Scholar]
  17. Pribnow D. Bacteriophage T7 early promoters: nucleotide sequences of two RNA polymerase binding sites. J Mol Biol. 1975 Dec 15;99(3):419–443. doi: 10.1016/s0022-2836(75)80136-7. [DOI] [PubMed] [Google Scholar]
  18. Pribnow D. Nucleotide sequence of an RNA polymerase binding site at an early T7 promoter. Proc Natl Acad Sci U S A. 1975 Mar;72(3):784–788. doi: 10.1073/pnas.72.3.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Reichardt L., Kaiser A. D. Control of lambda repressor synthesis. Proc Natl Acad Sci U S A. 1971 Sep;68(9):2185–2189. doi: 10.1073/pnas.68.9.2185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rosenberg M., Court D., Shimatake H., Brady C., Wulff D. L. The relationship between function and DNA sequence in an intercistronic regulatory region in phage lambda. Nature. 1978 Mar 30;272(5652):414–423. doi: 10.1038/272414a0. [DOI] [PubMed] [Google Scholar]
  21. Sanger F., Air G. M., Barrell B. G., Brown N. L., Coulson A. R., Fiddes C. A., Hutchison C. A., Slocombe P. M., Smith M. Nucleotide sequence of bacteriophage phi X174 DNA. Nature. 1977 Feb 24;265(5596):687–695. doi: 10.1038/265687a0. [DOI] [PubMed] [Google Scholar]
  22. Saucier J. M., Wang J. C. Angular alteration of the DNA helix by E. coli RNA polymerase. Nat New Biol. 1972 Oct 11;239(93):167–170. doi: 10.1038/newbio239167a0. [DOI] [PubMed] [Google Scholar]
  23. Schaller H., Gray C., Herrmann K. Nucleotide sequence of an RNA polymerase binding site from the DNA of bacteriophage fd. Proc Natl Acad Sci U S A. 1975 Feb;72(2):737–741. doi: 10.1073/pnas.72.2.737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Scherer G., Hobom G., Kössel H. DNA base sequence of the po promoter region of phage lamdba. Nature. 1977 Jan 13;265(5590):117–121. doi: 10.1038/265117a0. [DOI] [PubMed] [Google Scholar]
  25. Sekiya T., Gait M. J., Noris K., Ramamoorthy B., Khorana H. G. The nucleotide sequence in the promoter region of the gene for an Escherichia coli tyrosine transfer ribonucleic acid. J Biol Chem. 1976 Aug 10;251(15):4481–4489. [PubMed] [Google Scholar]
  26. Sugimoto K., Okamoto T., Sugisaki H., Takanami M. The nucleotide sequence of an RNA polymerase binding site on bacteriophage fd DNA. Nature. 1975 Feb 6;253(5491):410–414. doi: 10.1038/253410a0. [DOI] [PubMed] [Google Scholar]
  27. Takanami M., Sugimoto K., Sugisaki H., Okamoto T. Sequence of promoter for coat protein gene of bacteriophage fd. Nature. 1976 Mar 25;260(5549):297–302. doi: 10.1038/260297a0. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES