Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 May;76(5):2354–2358. doi: 10.1073/pnas.76.5.2354

Genetic variation and relative catalytic efficiencies: lactate dehydrogenase B allozymes of Fundulus heteroclitus.

A R Place, D A Powers
PMCID: PMC383599  PMID: 36616

Abstract

In order to evaluate whether functional differences exist between allelic variants of a B type lactate dehydrogenase (LDH; L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) in the teleost fish Fundulus heteroclitus (Linnaeus), the kinetic properties of pyruvate reduction were examined. While the pH dependence and the temperature dependence for maximal catalysis were indistinguishable among the allozymes, reaction velocities at low pyruvate concentrations were significantly different. At pH values below 8.00, the LDH-BbBb allozyme showed a greater reaction rate at lower temperatures (e.g., 10 degrees C) than LDH-BaBa. The phenomenon was reversed at higher temperatures (e.g., greater than 25 degrees C) for pH values between 6.50 and 7.00. The rates for the heterozygous phenotype, LDH-BaBb, were not the arithmetic average of the two homotetrameric allozymes. When reaction rates were compared at constant relative alkalinity, that is, a constant [OH-]/[H+] ratio, the findings were similar. The differences in the temperature dependence and the pH dependence for pyruvate reduction found between the LDH-B allozymes may reflect a selective adaptation and help explain the geographical variation in the Ldh-B gene frequencies of F. heteroclitus.

Full text

PDF
2354

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Babalola A. O., Beetlestone J. G., Luzzatto L. Genetic variants of human erythrocyte glucose-6-phosphate dehydrogenase. Kinetic and thermodynamic parameters of variants A, B, and A- in relation to quaternary structure. J Biol Chem. 1976 May 25;251(10):2993–3002. [PubMed] [Google Scholar]
  2. Borgmann U., Moon T. W. A comparison of lactate dehydrogenase from an ectothermic and an endothermic animal. Can J Biochem. 1975 Sep;53(9):998–1004. doi: 10.1139/o75-136. [DOI] [PubMed] [Google Scholar]
  3. Burt C. T., Glonek T., Bárány M. Analysis of phosphate metabolites, the intracellular pH, and the state of adenosine triphosphate in intact muscle by phosphorus nuclear magnetic resonance. J Biol Chem. 1976 May 10;251(9):2584–2591. [PubMed] [Google Scholar]
  4. Cleland W. W. The statistical analysis of enzyme kinetic data. Adv Enzymol Relat Areas Mol Biol. 1967;29:1–32. doi: 10.1002/9780470122747.ch1. [DOI] [PubMed] [Google Scholar]
  5. Cornish-Bowden A., Eisenthal R. Statistical considerations in the estimation of enzyme kinetic parameters by the direct linear plot andother methods. Biochem J. 1974 Jun;139(3):721–730. doi: 10.1042/bj1390721. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cornish-Bowden A. The effect of natural selection on enzymic catalysis. J Mol Biol. 1976 Feb 15;101(1):1–9. doi: 10.1016/0022-2836(76)90062-0. [DOI] [PubMed] [Google Scholar]
  7. Crowley P. H. Natural selection and the Michaelis constant. J Theor Biol. 1975 Apr;50(2):461–475. doi: 10.1016/0022-5193(75)90093-4. [DOI] [PubMed] [Google Scholar]
  8. Day T. H., Hillier P. C., Clarke B. Properties of genetically polymorphic isozymes of alcohol dehydrogenase in Drosophila melanogaster. Biochem Genet. 1974 Feb;11(2):141–153. doi: 10.1007/BF00485770. [DOI] [PubMed] [Google Scholar]
  9. Day T. H., Needham L. Properties of alcohol dehydrogenase isozymes in a strain of Drosophila melanogaster homozygous for the Adh-slow allele. Biochem Genet. 1974 Feb;11(2):167–175. doi: 10.1007/BF00485772. [DOI] [PubMed] [Google Scholar]
  10. Eisenthal R., Cornish-Bowden A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters. Biochem J. 1974 Jun;139(3):715–720. doi: 10.1042/bj1390715. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Fersht A. R. Catalysis, binding and enzyme-substrate complementarity. Proc R Soc Lond B Biol Sci. 1974 Nov 19;187(1089):397–407. doi: 10.1098/rspb.1974.0084. [DOI] [PubMed] [Google Scholar]
  12. Harris H. Molecular evolution: the neutralist - selectionist controversy. Fed Proc. 1976 Aug;35(10):2079–2082. [PubMed] [Google Scholar]
  13. Heisler N., Weitz A. M. Extracellular and intracellular pH with changes of temperature in the dogfish Scyliorhinus stellaris. Respir Physiol. 1976 Apr;26(2):249–263. doi: 10.1016/0034-5687(76)90103-1. [DOI] [PubMed] [Google Scholar]
  14. Howell B. J., Baumgardner F. W., Bondi K., Rahn H. Acid-base balance in cold-blooded vertebrates as a function of body temperature. Am J Physiol. 1970 Feb;218(2):600–606. doi: 10.1152/ajplegacy.1970.218.2.600. [DOI] [PubMed] [Google Scholar]
  15. ITZHAKI R. F., GILL D. M. A MICRO-BIURET METHOD FOR ESTIMATING PROTEINS. Anal Biochem. 1964 Dec;9:401–410. doi: 10.1016/0003-2697(64)90200-3. [DOI] [PubMed] [Google Scholar]
  16. Koehn R. K. Esterase heterogeneity: dynamics of a polymorphism. Science. 1969 Feb 28;163(3870):943–944. doi: 10.1126/science.163.3870.943. [DOI] [PubMed] [Google Scholar]
  17. Malan A., Wilson T. L., Reeves R. B. Intracellular pH in cold-blooded vertebrates as a function of body temperature. Respir Physiol. 1976 Oct;28(1):29–47. doi: 10.1016/0034-5687(76)90083-9. [DOI] [PubMed] [Google Scholar]
  18. Miller S., Pearcy R. W., Berger E. Polymorphism at the alpha-glycerophosphate dehydrogenase locus in Drosophila melanogaster. I. Properties of adult allozymes. Biochem Genet. 1975 Apr;13(3-4):175–188. doi: 10.1007/BF00486013. [DOI] [PubMed] [Google Scholar]
  19. Place A. R., Powers D. A. Genetic bases for protein polymorphism in Fundulus heteroclitus (L.).I. Lactate dehydrogenase (Ldh-B), malate dehydrogenase (Mdh-A), glucosephosphate isomerase (Gpi-B), and phosphoglucomutase (Pgm-A). Biochem Genet. 1978 Jun;16(5-6):577–591. doi: 10.1007/BF00484221. [DOI] [PubMed] [Google Scholar]
  20. Place A. R., Powers D. A., Lee Y. C. Affinity chromatography of lactic acid dehydrogenase on N-(6-aminohexyl)oxamate-sepharose. Anal Biochem. 1977 Dec;83(2):636–647. doi: 10.1016/0003-2697(77)90068-9. [DOI] [PubMed] [Google Scholar]
  21. Powers D. A., Greaney G. S., Place A. R. Physiological correlation between lactate dehydrogenase genotype and haemoglobin function in killifish. Nature. 1979 Jan 18;277(5693):240–241. doi: 10.1038/277240a0. [DOI] [PubMed] [Google Scholar]
  22. Powers D. A., Place A. R. Biochemical genetics of Fundulus heterolitus (L.). I. Temporal and spatial variation in gene frequencies of Ldh-B, Mdh-A, Gpi-B, and Pgm-A. Biochem Genet. 1978 Jun;16(5-6):593–607. doi: 10.1007/BF00484222. [DOI] [PubMed] [Google Scholar]
  23. Rahn H., Reeves R. B., Howell B. J. Hydrogen ion regulation, temperature, and evolution. Am Rev Respir Dis. 1975 Aug;112(2):165–172. doi: 10.1164/arrd.1975.112.2.165. [DOI] [PubMed] [Google Scholar]
  24. Südi J., Havsteen B. H. On the catalytic activity of chemically modified enzymes involving two or more substrates and products. Int J Pept Protein Res. 1976;8(6):519–531. doi: 10.1111/j.1399-3011.1976.tb02532.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES