Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):2703–2707. doi: 10.1073/pnas.76.6.2703

Helical parameters of DNA do not change when DNA fibers are wetted: X-ray diffraction study.

S B Zimmerman, B H Pheiffer
PMCID: PMC383676  PMID: 288058

Abstract

We have measured the helical parameters of DNA in concentrated solutions by x-ray fiber diffraction methods. Fibers of the sodium salt of DNA were swollen with water within capillaries; the capillary served to limit water uptake, slowing dissolution. Samples containing up to 80% water gave essentially a B-form diffraction pattern and had virtually the same helical parameters [9.91 base pairs per turn (SD = 0.14); 3.34 A axial rise per residue (SD = 0.019)] as did the initial fibers [9.95 base pairs per turn (SD = 0.15); 3.33 A axial rise per residue (SD = 0.015)]. Hence, under highly solvated conditions in which the interactions between molecules should be greatly decreased, DNA maintains its classical B-form structure.

Full text

PDF
2707

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnott S., Hukins D. W. Optimised parameters for A-DNA and B-DNA. Biochem Biophys Res Commun. 1972 Jun 28;47(6):1504–1509. doi: 10.1016/0006-291x(72)90243-4. [DOI] [PubMed] [Google Scholar]
  2. Bram S. The secondary structure of DNA in solution and in nucleohistone. J Mol Biol. 1971 May 28;58(1):277–288. doi: 10.1016/0022-2836(71)90246-4. [DOI] [PubMed] [Google Scholar]
  3. Cooper P. J., Hamilton L. D. The A-B conformational change in the sodium salt of DNA. J Mol Biol. 1966 Apr;16(2):562–563. doi: 10.1016/s0022-2836(66)80193-6. [DOI] [PubMed] [Google Scholar]
  4. Crick F. H. Linking numbers and nucleosomes. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2639–2643. doi: 10.1073/pnas.73.8.2639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dover S. D. Symmetry and packing in B-DNA. J Mol Biol. 1977 Mar 15;110(4):699–700. doi: 10.1016/s0022-2836(77)80085-5. [DOI] [PubMed] [Google Scholar]
  6. Eisenberg H., Cohen G. An interpretation of the low-angle X-ray scattering of DNA solutions. J Mol Biol. 1968 Oct 28;37(2):355–362. doi: 10.1016/0022-2836(68)90274-x. [DOI] [PubMed] [Google Scholar]
  7. FRANKLIN R. E., GOSLING R. G. Molecular configuration in sodium thymonucleate. Nature. 1953 Apr 25;171(4356):740–741. doi: 10.1038/171740a0. [DOI] [PubMed] [Google Scholar]
  8. FULLER W., WILKINS M. H., WILSON H. R., HAMILTON L. D. THE MOLECULAR CONFIGURATION OF DEOXYRIBONUCLEIC ACID. IV. X-RAY DIFFRACTION STUDY OF THE A FORM. J Mol Biol. 1965 May;12:60–76. doi: 10.1016/s0022-2836(65)80282-0. [DOI] [PubMed] [Google Scholar]
  9. Griffith J. D. DNA structure: evidence from electron microscopy. Science. 1978 Aug 11;201(4355):525–527. doi: 10.1126/science.663672. [DOI] [PubMed] [Google Scholar]
  10. Hogan M., Dattagupta N., Crothers D. M. Transient electric dichroism of rod-like DNA molecules. Proc Natl Acad Sci U S A. 1978 Jan;75(1):195–199. doi: 10.1073/pnas.75.1.195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Levitt M. How many base-pairs per turn does DNA have in solution and in chromatin? Some theoretical calculations. Proc Natl Acad Sci U S A. 1978 Feb;75(2):640–644. doi: 10.1073/pnas.75.2.640. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. MARVIN D. A., SPENCER M., WILKINS M. H., HAMILTON L. D. The molecular configuration of deoxyribonucleic acid. III. X-ray diffraction study of the C form of the lithium salt. J Mol Biol. 1961 Oct;3:547–565. doi: 10.1016/s0022-2836(61)80021-1. [DOI] [PubMed] [Google Scholar]
  13. Neville D. M., Jr, Davies D. R. The interaction of acridine dyes with DNA: an x-ray diffraction and optical investigation. J Mol Biol. 1966 May;17(1):57–74. doi: 10.1016/s0022-2836(66)80094-3. [DOI] [PubMed] [Google Scholar]
  14. Vollenweider H. J., James A., Szybalski W. Discrete length classes of DNA depend on mode of dehydration. Proc Natl Acad Sci U S A. 1978 Feb;75(2):710–714. doi: 10.1073/pnas.75.2.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. WATSON J. D., CRICK F. H. Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid. Nature. 1953 Apr 25;171(4356):737–738. doi: 10.1038/171737a0. [DOI] [PubMed] [Google Scholar]
  16. WILKINS M. H. F., STOKES A. R., WILSON H. R. Molecular structure of deoxypentose nucleic acids. Nature. 1953 Apr 25;171(4356):738–740. doi: 10.1038/171738a0. [DOI] [PubMed] [Google Scholar]
  17. Wang J. C. Helical repeat of DNA in solution. Proc Natl Acad Sci U S A. 1979 Jan;76(1):200–203. doi: 10.1073/pnas.76.1.200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Zimmerman S. B. Polynucleotide models. II. Prediction of the radial position and tilt of the bases from the helical parameters. Biopolymers. 1977 Apr;16(4):749–763. doi: 10.1002/bip.1977.360160405. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES