Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1979 Jun;76(6):2881–2885. doi: 10.1073/pnas.76.6.2881

Familial hyperproinsulinemia: partial characterization of circulating proinsulin-like material.

K H Gabbay, R M Bergenstal, J Wolff, M E Mako, A H Rubenstein
PMCID: PMC383713  PMID: 288074

Abstract

Familial hyperproinsulinemia is an autosomal dominant defect that is associated with strikingly elevated levels of serum proinsulin-like material. Our studies show that trypsin converts familial hyperproinsulinemia proinsulin to insulin more slowly than it converts a 131I-labeled porcine proinsulin marker. Molar yields of insulin indicated that the material may be an intermediate proinsulin. Studies with two human C-peptide antisera that differ in their relative immunoreactivity with human C-peptide and proinsulin showed that the two antisera reacted equally with familial hyperproinsulinemia proinsulin, suggesting that it is a partially cleaved proinsulin intermediate. Sulfitolysis of highly purified material to break the inter- and intra-chain disulfide bridges and subsequent adsorption on a specific B-chain antibody covalently bound to Sepharose beads showed that the C-peptide was still connected to the B-chain. These data indicate that familial hyperproinsulinemia proinsulin is normally cleaved at the C-peptide-A-chain linkage site. A structural abnormality appears to underlie familial hyperproinsulinemia proinsulin, which impairs its cleavage at the B-chain-C-peptide linkage site.

Full text

PDF
2883

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Chance R. E. Amino acid sequences of proinsulins and intermediates. Diabetes. 1972;21(2 Suppl):461–467. doi: 10.2337/diab.21.2.s461. [DOI] [PubMed] [Google Scholar]
  2. Freychet P., Roth J., Neville D. M., Jr Monoiodoinsulin: demonstration of its biological activity and binding to fat cells and liver membranes. Biochem Biophys Res Commun. 1971 Apr 16;43(2):400–408. doi: 10.1016/0006-291x(71)90767-4. [DOI] [PubMed] [Google Scholar]
  3. Gabbay K. H., DeLuca K., Fisher J. N., Jr, Mako M. E., Rubenstein A. H. Familial hyperproinsulinemia. An autosomal dominant defect. N Engl J Med. 1976 Apr 22;294(17):911–915. doi: 10.1056/NEJM197604222941701. [DOI] [PubMed] [Google Scholar]
  4. Gutman R. A., Lazarus N. R., Recant L. Electrophoretic characterization of circulating human proinsulin and insulin. Diabetologia. 1972 Apr;8(2):136–140. doi: 10.1007/BF01235639. [DOI] [PubMed] [Google Scholar]
  5. HUNTER W. M., GREENWOOD F. C. Preparation of iodine-131 labelled human growth hormone of high specific activity. Nature. 1962 May 5;194:495–496. doi: 10.1038/194495a0. [DOI] [PubMed] [Google Scholar]
  6. Kemmler W., Peterson J. D., Steiner D. F. Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and carboxypeptidase B. J Biol Chem. 1971 Nov 25;246(22):6786–6791. [PubMed] [Google Scholar]
  7. Kuzuya H., Blix P. M., Horwitz D. L., Rubenstein A. H., Steiner D. F., Binder C., Faber O. K. Heterogeneity of circulating C-peptide. J Clin Endocrinol Metab. 1977 May;44(5):952–962. doi: 10.1210/jcem-44-5-952. [DOI] [PubMed] [Google Scholar]
  8. Steiner D. F., Cho S., Oyer P. E., Terris S., Peterson J. D., Rubenstein A. H. Isolation and characterization of proinsulin C-peptide from bovine pancreas. J Biol Chem. 1971 Mar 10;246(5):1365–1374. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES