Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Aug;80(15):4837–4841. doi: 10.1073/pnas.80.15.4837

Amino acid sequence of the Fv region of a human monoclonal IgM (protein WEA) with antibody activity against 3,4-pyruvylated galactose in Klebsiella polysaccharides K30 and K33.

F Goñi, B Frangione
PMCID: PMC384140  PMID: 6410398

Abstract

We have determined the amino acid sequence of the Fv [variable heavy (VH) and variable light (VL)] region of a human monoclonal IgM-kappa with antibody activity against 3,4-pyruvylated galactose, isolated from the plasma of patient WEA with Waldenström macroglobulinemia. The VH region has 114 residues, belongs to subgroup III, and has a very short third complementarity-determining region (CDR3), probably due to a small D segment/or an unusual D-J rearrangement (D, diversity; J, joining). The VL region has 108 residues and belongs to subgroup V kappa I. Compared to other members of the human VHIII and V kappa I families, WEA Fv does not appear to have significant differences within the framework residues but has unique CDRs that might be responsible for the particular antibody activity. Another IgM-kappa (GAL), which has an as-yet-undetermined antibody activity, shares a striking homology in V kappa with WEA, including an identical CDR1.

Full text

PDF
4838

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Andrews D. W., Capra J. D. Amino acid sequence of the variable regions of light chains from two idiotypically cross-reactive human IgM anti-gamma-globulins of the Wa group. Biochemistry. 1981 Sep 29;20(20):5816–5822. doi: 10.1021/bi00523a026. [DOI] [PubMed] [Google Scholar]
  2. Avrameas S., Guilbert B., Dighiero G. Natural antibodies against tubulin, actin myoglobin, thyroglobulin, fetuin, albumin and transferrin are present in normal human sera, and monoclonal immunoglobulins from multiple myeloma and Waldenström's macroglobulinemia may express similar antibody specificities. Ann Immunol (Paris) 1981 Mar-Apr;132C(2):231–236. doi: 10.1016/0769-2625(81)90031-3. [DOI] [PubMed] [Google Scholar]
  3. Baltimore D. Gene conversion: some implications for immunoglobulin genes. Cell. 1981 Jun;24(3):592–594. doi: 10.1016/0092-8674(81)90082-9. [DOI] [PubMed] [Google Scholar]
  4. Bentley D. L., Rabbitts T. H. Human V kappa immunoglobulin gene number: implications for the origin of antibody diversity. Cell. 1981 Jun;24(3):613–623. doi: 10.1016/0092-8674(81)90088-x. [DOI] [PubMed] [Google Scholar]
  5. Bentley D. L., Rabbitts T. H. Human immunoglobulin variable region genes--DNA sequences of two V kappa genes and a pseudogene. Nature. 1980 Dec 25;288(5792):730–733. doi: 10.1038/288730a0. [DOI] [PubMed] [Google Scholar]
  6. Bernstein K. E., Reddy E. P., Alexander C. B., Mage R. G. A cDNA sequence encoding a rabbit heavy chain variable region of the VHa2 allotype showing homologies with human heavy chain sequences. Nature. 1982 Nov 4;300(5887):74–76. doi: 10.1038/300074a0. [DOI] [PubMed] [Google Scholar]
  7. Davis M. M., Calame K., Early P. W., Livant D. L., Joho R., Weissman I. L., Hood L. An immunoglobulin heavy-chain gene is formed by at least two recombinational events. Nature. 1980 Feb 21;283(5749):733–739. doi: 10.1038/283733a0. [DOI] [PubMed] [Google Scholar]
  8. Early P., Huang H., Davis M., Calame K., Hood L. An immunoglobulin heavy chain variable region gene is generated from three segments of DNA: VH, D and JH. Cell. 1980 Apr;19(4):981–992. doi: 10.1016/0092-8674(80)90089-6. [DOI] [PubMed] [Google Scholar]
  9. Frangione B., Rosenwasser E., Penefsky H. S., Pullman M. E. Amino acid sequence of the protein inhibitor of mitochondrial adenosine triphosphatase. Proc Natl Acad Sci U S A. 1981 Dec;78(12):7403–7407. doi: 10.1073/pnas.78.12.7403. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Gough N. M., Bernard O. Sequences of the joining region genes for immunoglobulin heavy chains and their role in generation of antibody diversity. Proc Natl Acad Sci U S A. 1981 Jan;78(1):509–513. doi: 10.1073/pnas.78.1.509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hieter P. A., Maizel J. V., Jr, Leder P. Evolution of human immunoglobulin kappa J region genes. J Biol Chem. 1982 Feb 10;257(3):1516–1522. [PubMed] [Google Scholar]
  12. Hochman J., Inbar D., Givol D. An active antibody fragment (Fv) composed of the variable portions of heavy and light chains. Biochemistry. 1973 Mar 13;12(6):1130–1135. doi: 10.1021/bi00730a018. [DOI] [PubMed] [Google Scholar]
  13. Kabat E. A., Liao J., Bretting H., Franklin E. C., Geltner D., Frangione B., Koshland M. E., Shyong J., Osserman E. F. Human monoclonal macroglobulins with specificity for Klebsiella K polysaccharides that contain 3,4-pyruvylated-D-galactose and 4,6-pyruvylated-D-galactose. J Exp Med. 1980 Oct 1;152(4):979–995. doi: 10.1084/jem.152.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kabat E. A., Wu T. T., Bilofsky H. Variable region genes for the immunoglobulin framework are assembled from small segments of DNA--a hypothesis. Proc Natl Acad Sci U S A. 1978 May;75(5):2429–2433. doi: 10.1073/pnas.75.5.2429. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Klapper D. G., Wilde C. E., 3rd, Capra J. D. Automated amino acid sequence of small peptides utilizing Polybrene. Anal Biochem. 1978 Mar;85(1):126–131. doi: 10.1016/0003-2697(78)90282-8. [DOI] [PubMed] [Google Scholar]
  16. Kunkel H. G., Winchester R. J., Joslin F. G., Capra J. D. Similarities in the light chains of anti-gamma-globulins showing cross-idiotypic specificities. J Exp Med. 1974 Jan 1;139(1):128–136. doi: 10.1084/jem.139.1.128. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  18. Laure C. J., Watanabe S., Hilschmann N. Die Primärstruktur eines monoklonalen IgM-Immunoglobulins (Makroglobulin Gal.),I. Die Aminosäuresequenz der L-Kette, kappa-Typ, Subgruppe I. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1503–1504. [PubMed] [Google Scholar]
  19. Lin L. C., Putnam F. W. Cold pepsin digestion: a novel method to produce the Fv fragment from human immunoglobulin M. Proc Natl Acad Sci U S A. 1978 Jun;75(6):2649–2653. doi: 10.1073/pnas.75.6.2649. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Michaelsen T. E., Frangione B., Franklin E. C. Primary structure of the "hinge" region of human IgG3. Probable quadruplication of a 15-amino acid residue basic unit. J Biol Chem. 1977 Feb 10;252(3):883–889. [PubMed] [Google Scholar]
  21. Plaut A. G., Tomasi T. B., Jr Immunoglobulin M: pentameric Fcmu fragments released by trypsin at higher temperatures. Proc Natl Acad Sci U S A. 1970 Feb;65(2):318–322. doi: 10.1073/pnas.65.2.318. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Podell D. N., Abraham G. N. A technique for the removal of pyroglutamic acid from the amino terminus of proteins using calf liver pyroglutamate amino peptidase. Biochem Biophys Res Commun. 1978 Mar 15;81(1):176–185. doi: 10.1016/0006-291x(78)91646-7. [DOI] [PubMed] [Google Scholar]
  23. Poljak R. J., Amzel L. M., Chen B. L., Phizackerley R. P., Saul F. The three-dimensional structure of the fab' fragment of a human myeloma immunoglobulin at 2.0-angstrom resolution. Proc Natl Acad Sci U S A. 1974 Sep;71(9):3440–3444. doi: 10.1073/pnas.71.9.3440. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. REDDI K. K., KODICEK E. Metabolism of nicotinic acid and related compounds in man and rat. Biochem J. 1953 Jan;53(2):286–294. doi: 10.1042/bj0530286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Rabbitts T. H., Bentley D. L., Dunnick W., Forster A., Matthyssens G. E., Milstein C. Immunoglobulin genes undergo multiple sequence rearrangements during differentiation. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):867–878. doi: 10.1101/sqb.1981.045.01.104. [DOI] [PubMed] [Google Scholar]
  26. Rao D. N., Rudikoff S., Krutzsch H., Potter M. Structural evidence for independent joining region gene in immunoglobulin heavy chains from anti-galactan myeloma proteins and its potential role in generating diversity in complementarity-determining regions. Proc Natl Acad Sci U S A. 1979 Jun;76(6):2890–2894. doi: 10.1073/pnas.76.6.2890. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Ravetch J. V., Siebenlist U., Korsmeyer S., Waldmann T., Leder P. Structure of the human immunoglobulin mu locus: characterization of embryonic and rearranged J and D genes. Cell. 1981 Dec;27(3 Pt 2):583–591. doi: 10.1016/0092-8674(81)90400-1. [DOI] [PubMed] [Google Scholar]
  28. Sakano H., Hüppi K., Heinrich G., Tonegawa S. Sequences at the somatic recombination sites of immunoglobulin light-chain genes. Nature. 1979 Jul 26;280(5720):288–294. doi: 10.1038/280288a0. [DOI] [PubMed] [Google Scholar]
  29. Sakano H., Kurosawa Y., Weigert M., Tonegawa S. Identification and nucleotide sequence of a diversity DNA segment (D) of immunoglobulin heavy-chain genes. Nature. 1981 Apr 16;290(5807):562–565. doi: 10.1038/290562a0. [DOI] [PubMed] [Google Scholar]
  30. Schilling J., Clevinger B., Davie J. M., Hood L. Amino acid sequence of homogeneous antibodies to dextran and DNA rearrangements in heavy chain V-region gene segments. Nature. 1980 Jan 3;283(5742):35–40. doi: 10.1038/283035a0. [DOI] [PubMed] [Google Scholar]
  31. Segal D. M., Padlan E. A., Cohen G. H., Rudikoff S., Potter M., Davies D. R. The three-dimensional structure of a phosphorylcholine-binding mouse immunoglobulin Fab and the nature of the antigen binding site. Proc Natl Acad Sci U S A. 1974 Nov;71(11):4298–4302. doi: 10.1073/pnas.71.11.4298. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Seidman J. G., Leder P. The arrangement and rearrangement of antibody genes. Nature. 1978 Dec 21;276(5690):790–795. doi: 10.1038/276790a0. [DOI] [PubMed] [Google Scholar]
  33. Siebenlist U., Ravetch J. V., Korsmeyer S., Waldmann T., Leder P. Human immunoglobulin D segments encoded in tandem multigenic families. Nature. 1981 Dec 17;294(5842):631–635. doi: 10.1038/294631a0. [DOI] [PubMed] [Google Scholar]
  34. Tonegawa S., Sakano H., Make R., Traunecker A., Heinrich G., Roeder W., Kurosawa Y. Somatic reorganization of immunoglobulin genes during lymphocyte differentiation. Cold Spring Harb Symp Quant Biol. 1981;45(Pt 2):839–858. doi: 10.1101/sqb.1981.045.01.102. [DOI] [PubMed] [Google Scholar]
  35. Watanabe S., Barnikol H. U., Horn J., Bertram J., Hilschmann N. Die Primärstruktur eines monoklonalen IgM-Immunoglobulins (Makroglobulin Gal.), II. Die Aminosäuresequenz der H-Kette (mu-Typ,Subgruppe HIII), Struktur des gesamten IgM-Moleküls. Hoppe Seylers Z Physiol Chem. 1973 Oct-Nov;354(10-11):1505–1509. [PubMed] [Google Scholar]
  36. Wu T. T., Kabat E. A. Fourteen nucleotides in the second complementarity-determining region of a human heavy-chain variable region gene are identical with a sequence in a human D minigene. Proc Natl Acad Sci U S A. 1982 Aug;79(16):5031–5032. doi: 10.1073/pnas.79.16.5031. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES