Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1983 Aug;80(16):5112–5116. doi: 10.1073/pnas.80.16.5112

Mutant analysis shows that the Ca2+-induced K+ current shuts off one type of excitation in Paramecium.

Y Saimi, R D Hinrichsen, M Forte, C Kung
PMCID: PMC384199  PMID: 6410401

Abstract

Two mutants of Paramecium tetraurelia, called "pantophobiacs," were found to lack most of the slow Ca2+-induced K+ outward current. Passive properties, the transient Ca2+ inward current, and the fast depolarization-induced K+ outward current remain normal. The mutant defect reduces the ability to shut off a normal, excited state of the membrane and results in repeated, long backward swimming instead of the wild-type jerks in response to a variety of ions, to heat, and to touch.

Full text

PDF
5114

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adoutte A., Ling K. Y., Forte M., Ramanathan R., Nelson D., Kung C. Ionic channels of Paramecium: from genetics and electrophysiology to biochemistry. J Physiol (Paris) 1981 May;77(9):1145–1159. [PubMed] [Google Scholar]
  2. Armstrong C. M., Swenson R. P., Jr, Taylor S. R. Block of squid axon K channels by internally and externally applied barium ions. J Gen Physiol. 1982 Nov;80(5):663–682. doi: 10.1085/jgp.80.5.663. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Brehm P., Dunlap K., Eckert R. Calcium-dependent repolarization in Paramecium. J Physiol. 1978 Jan;274:639–654. doi: 10.1113/jphysiol.1978.sp012171. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Browning J. L., Nelson D. L., Hansma H. G. Ca2+ influx across the excitable membrane of behavioural mutants of Paramecium. Nature. 1976 Feb 12;259(5543):491–494. doi: 10.1038/259491a0. [DOI] [PubMed] [Google Scholar]
  5. Eckert R., Brehm P. Ionic mechanisms of excitation in Paramecium. Annu Rev Biophys Bioeng. 1979;8:353–383. doi: 10.1146/annurev.bb.08.060179.002033. [DOI] [PubMed] [Google Scholar]
  6. Forte M., Satow Y., Nelson D., Kung C. Mutational alteration of membrane phospholipid composition and voltage-sensitive ion channel function in paramecium. Proc Natl Acad Sci U S A. 1981 Nov;78(11):7195–7199. doi: 10.1073/pnas.78.11.7195. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorman A. L., Hermann A., Thomas M. V. Ionic requirements for membrane oscillations and their dependence on the calcium concentration in a molluscan pace-maker neurone. J Physiol. 1982 Jun;327:185–217. doi: 10.1113/jphysiol.1982.sp014227. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haga N., Forte M., Saimi Y., Kung C. Microinjection of cytoplasm as a test of complementation in Paramecium. J Cell Biol. 1982 Feb;92(2):559–564. doi: 10.1083/jcb.92.2.559. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hall J. C. Genetics of the nervous system in Drosophila. Q Rev Biophys. 1982 May;15(2):223–479. doi: 10.1017/s0033583500004844. [DOI] [PubMed] [Google Scholar]
  10. Kung C., Chang S. Y., Satow Y., Houten J. V., Hansma H. Genetic dissection of behavior in paramecium. Science. 1975 May 30;188(4191):898–904. [PubMed] [Google Scholar]
  11. Kung C., Eckert R. Genetic modification of electric properties in an excitable membrane (paramecium-calcium conductance-electrophysiological measurements-membrane mutant). Proc Natl Acad Sci U S A. 1972 Jan;69(1):93–97. doi: 10.1073/pnas.69.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Kung C. Genic mutants with altered system of excitation in Paramecium aurelia. II. Mutagenesis, screening and genetic analysis of the mutants. Genetics. 1971 Sep;69(1):29–45. doi: 10.1093/genetics/69.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kung C., Saimi Y. The physiological basis of taxes in Paramecium. Annu Rev Physiol. 1982;44:519–534. doi: 10.1146/annurev.ph.44.030182.002511. [DOI] [PubMed] [Google Scholar]
  14. Latorre R., Vergara C., Hidalgo C. Reconstitution in planar lipid bilayers of a Ca2+-dependent K+ channel from transverse tubule membranes isolated from rabbit skeletal muscle. Proc Natl Acad Sci U S A. 1982 Feb;79(3):805–809. doi: 10.1073/pnas.79.3.805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ling K. Y., Kung C. Ba2+ influx measures the duration of membrane excitation in Paramecium. J Exp Biol. 1980 Feb;84:73–87. doi: 10.1242/jeb.84.1.73. [DOI] [PubMed] [Google Scholar]
  16. Meech R. W. Calcium-dependent potassium activation in nervous tissues. Annu Rev Biophys Bioeng. 1978;7:1–18. doi: 10.1146/annurev.bb.07.060178.000245. [DOI] [PubMed] [Google Scholar]
  17. Merkel S. J., Kaneshiro E. S., Gruenstein E. I. Characterization of the cilia and ciliary membrane proteins of wild-type Paramecium tetraurelia and a pawn mutant. J Cell Biol. 1981 May;89(2):206–215. doi: 10.1083/jcb.89.2.206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Naitoh Y., Eckert R., Friedman K. A regenerative calcium response in Paramecium. J Exp Biol. 1972 Jun;56(3):667–681. doi: 10.1242/jeb.56.3.667. [DOI] [PubMed] [Google Scholar]
  19. Naitoh Y., Eckert R. Ionic mechanisms controlling behavioral responses of paramecium to mechanical stimulation. Science. 1969 May 23;164(3882):963–965. doi: 10.1126/science.164.3882.963. [DOI] [PubMed] [Google Scholar]
  20. Oertel D., Schein S. J., Kung C. Separation of membrane currents using a Paramecium mutant. Nature. 1977 Jul 14;268(5616):120–124. doi: 10.1038/268120a0. [DOI] [PubMed] [Google Scholar]
  21. Saimi Y., Kung C. A Ca-induced Na-current in Paramecium. J Exp Biol. 1980 Oct;88:305–325. doi: 10.1242/jeb.88.1.305. [DOI] [PubMed] [Google Scholar]
  22. Saimi Y., Kung C. Are ions involved in the gating of calcium channels? Science. 1982 Oct 8;218(4568):153–156. doi: 10.1126/science.6289432. [DOI] [PubMed] [Google Scholar]
  23. Satow Y. Internal calcium concentration and potassium permeability in Paramecium. J Neurobiol. 1978 Jan;9(1):81–91. doi: 10.1002/neu.480090107. [DOI] [PubMed] [Google Scholar]
  24. Satow Y., Kung C. A 'TEA+-insensitive' mutant with increased potassium conductance in Paramecium aurelia. J Exp Biol. 1976 Aug;65(1):51–63. doi: 10.1242/jeb.65.1.51. [DOI] [PubMed] [Google Scholar]
  25. Satow Y., Kung C. Ca-induced K+-outward current in Paramecium tetraurelia. J Exp Biol. 1980 Oct;88:293–303. doi: 10.1242/jeb.88.1.293. [DOI] [PubMed] [Google Scholar]
  26. Satow Y., Kung C. Genetic dissection of active electrogenesis in Paramecium aurelia. Nature. 1974 Jan 4;247(5435):69–71. doi: 10.1038/247069a0. [DOI] [PubMed] [Google Scholar]
  27. Satow Y., Kung C. Membrane currents of pawn mutants of the pwA group in Paramecium tetraurelia. J Exp Biol. 1980 Feb;84:57–71. doi: 10.1242/jeb.84.1.57. [DOI] [PubMed] [Google Scholar]
  28. Satow Y., Kung C. Possible reduction of surface charge by a mutation in Paramecium tetraurelia. J Membr Biol. 1981 Apr 30;59(3):179–190. doi: 10.1007/BF01875424. [DOI] [PubMed] [Google Scholar]
  29. Schwarz W., Passow H. Ca2+-activated K+ channels in erythrocytes and excitable cells. Annu Rev Physiol. 1983;45:359–374. doi: 10.1146/annurev.ph.45.030183.002043. [DOI] [PubMed] [Google Scholar]
  30. Takahashi M., Naitoh Y. Behavioural mutants of Paramecium caudatum with defective membranes electrogenesis. Nature. 1978 Feb 16;271(5646):656–659. doi: 10.1038/271656a0. [DOI] [PubMed] [Google Scholar]
  31. Thiele J., Schultz J. E. Ciliary membrane vesicles of paramecium contain the voltage-sensitive calcium channel. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3688–3691. doi: 10.1073/pnas.78.6.3688. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES