Skip to main content
Journal of Bacteriology logoLink to Journal of Bacteriology
. 1954 Dec;68(6):727–733. doi: 10.1128/jb.68.6.727-733.1954

THE METABOLISM OF PURINES IN AEROBACTER AEROGENES: A STUDY OF PURINELESS MUTANTS1

Marcus S Brooke a, Boris Magasanik a
PMCID: PMC386220  PMID: 13221549

Full text

PDF
733

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BALIS M. E., LEVIN D. H., BROWN G. B., ELION G. B., VANDERWERFF H., HITCHINGS G. H. The incorporation of exogenous purines into pentose nucleic acid by Lactobacillus casei. J Biol Chem. 1952 May;196(2):729–747. [PubMed] [Google Scholar]
  2. BALIS M. E., LEVIN D. H., BROWN G. B., ELION G. B., VANDERWERFF H., HITCHINGS G. H. The utilization of purine ribotides by Lactobacillus casei. J Biol Chem. 1953 Jan;200(1):1–6. [PubMed] [Google Scholar]
  3. BENDICH A., FURST S. S., BROWN G. B. On the role of 2,6-diaminopurine in the biosynthesis of nucleic acid guanine. J Biol Chem. 1950 Jul;185(1):423–433. [PubMed] [Google Scholar]
  4. BERGMANN E. D., BEN-ISHAI R., VOLCANI B. E. Role of 4-aminoimidazole-5-carboxamide in purine synthesis by Escherichia coli. J Biol Chem. 1952 Feb;194(2):531–537. [PubMed] [Google Scholar]
  5. BOLTON E. T., REYNARD A. M. Utilization of purine and pyrimidine compounds in nucleic acid synthesis by Escherichia coli. Biochim Biophys Acta. 1954 Mar;13(3):381–385. doi: 10.1016/0006-3002(54)90345-5. [DOI] [PubMed] [Google Scholar]
  6. BROWN G. B. Nucleic acids, purines, and pyrimidines. Annu Rev Biochem. 1953;22:141–178. doi: 10.1146/annurev.bi.22.070153.001041. [DOI] [PubMed] [Google Scholar]
  7. BUCHANAN J. M., SCHULMAN M. P. Biosynthesis of the purines. III. Reactions of formate and inosinic acid and an effect of the citrovorum factor. J Biol Chem. 1953 May;202(1):241–252. [PubMed] [Google Scholar]
  8. ELION G. B., HITCHINGS G. H. Antagonists of nucleic acid derivatives. IV. Reversal studies with 2-aminopurine and 2,6-diaminopurine. J Biol Chem. 1950 Dec;187(2):511–522. [PubMed] [Google Scholar]
  9. ELION G. B., VANDERWERFF H., HITCHINGS G. H., BALIS M. E., LEVIN D. H., BROWN G. B. Purine metabolism of a diaminopurine-resistant strain of Lactobacillus casei. J Biol Chem. 1953 Jan;200(1):7–16. [PubMed] [Google Scholar]
  10. FRIEDMAN S., GOTS J. S. Deamination of isoguanine by Escherichia coli. Arch Biochem Biophys. 1951 Jun;32(1):227–229. doi: 10.1016/0003-9861(51)90263-9. [DOI] [PubMed] [Google Scholar]
  11. FRIEDMAN S., GOTS J. S. The purine and pyrimidine metabolism of normal and phage-infected Escherichia coli. J Biol Chem. 1953 Mar;201(1):125–135. [PubMed] [Google Scholar]
  12. GOTS J. S., CHU E. C. Studies on purine metabolism in bacteria. I. The role of p-aminobenzoic acid. J Bacteriol. 1952 Oct;64(4):537–546. doi: 10.1128/jb.64.4.537-546.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. GOTS J. S. Occurrence of 4-amino-5-imidazolecarboxamide as a pentose derivative. Nature. 1953 Aug 8;172(4371):256–257. doi: 10.1038/172256a0. [DOI] [PubMed] [Google Scholar]
  14. GOTS J. S. The accumulation of 4-amino-5-imidazolecarboxamide by a purine-requiring mutant of Escherichia coli. Arch Biochem. 1950 Nov;29(1):222–224. [PubMed] [Google Scholar]
  15. GREENBERG G. R. Mechanisms involved in the biosynthesis of purines. Fed Proc. 1953 Jun;12(2):651–659. [PubMed] [Google Scholar]
  16. HEINRICH M. R., WILSON D. W. The biosynthesis of nucleic acid components studied with C14. I. Purines and pyrimidines in the rat. J Biol Chem. 1950 Oct;186(2):447–460. [PubMed] [Google Scholar]
  17. KOCH A. L., PUTNAM F. W., EVANS E. A., Jr The purine metabolism of Escherichia coli. J Biol Chem. 1952 May;197(1):105–112. [PubMed] [Google Scholar]
  18. Lederberg E M. Allelic Relationships and Reverse Mutation in Escherichia Coli. Genetics. 1952 Sep;37(5):469–483. doi: 10.1093/genetics/37.5.469. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. MAGASANIK B., BROOKE M. S. The accumulation of xanthosine by a guanine-less mutant of Aerobacter aerogenes. J Biol Chem. 1954 Jan;206(1):83–87. [PubMed] [Google Scholar]
  20. POMPER S. Purine-requiring and pyrimidine-requiring mutants of Saccharomyces cerevisiae. J Bacteriol. 1952 Jun;63(6):707–713. doi: 10.1128/jb.63.6.707-713.1952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SAFFRAN M., SCARANO E. Mechanism of the incorporation of adenine into adenosine monophosphate. Nature. 1953 Nov 21;172(4386):949–951. doi: 10.1038/172949a0. [DOI] [PubMed] [Google Scholar]
  22. SHUSTER L., KAPLAN N. O. A specific b nucleotidase. J Biol Chem. 1953 Apr;201(2):535–546. [PubMed] [Google Scholar]
  23. SUTTON W. B., WERKMAN C. H. The carbon and nitrogen precursors of bacterial purines. Arch Biochem Biophys. 1953 Nov;47(1):1–7. doi: 10.1016/0003-9861(53)90432-9. [DOI] [PubMed] [Google Scholar]
  24. USHIBA D., MAGASANIK B. Effects of auxotrophic mutations on the adaptation to inositol degradation in Aerobacter aerogenes. Proc Soc Exp Biol Med. 1952 Aug-Sep;80(4):626–632. doi: 10.3181/00379727-80-19713. [DOI] [PubMed] [Google Scholar]
  25. WILLIAMS W. J., BUCHANAN J. M. Biosynthesis of the purines. IV. The metabolism of 4-amino-5-imidazolecarboxamide in yeast. J Biol Chem. 1953 May;202(1):253–262. [PubMed] [Google Scholar]

Articles from Journal of Bacteriology are provided here courtesy of American Society for Microbiology (ASM)

RESOURCES