Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1986 Oct;83(19):7513–7517. doi: 10.1073/pnas.83.19.7513

Neuroleptics of the diphenylbutylpiperidine series are potent calcium channel inhibitors.

J P Galizzi, M Fosset, G Romey, P Laduron, M Lazdunski
PMCID: PMC386749  PMID: 2429309

Abstract

[3H]Fluspirilene, a neuroleptic molecule of the diphenylbutylpiperidine series, binds to skeletal muscle transverse tubule membranes with a high affinity corresponding to a Kd of 0.11 +/- 0.04 nM, A 1:1 stoichiometry was found between [3H]fluspirilene binding and the binding of (-)-[3H]desmethoxyverapamil [(-)[3H]D888], one of the most potent Ca2+ channel inhibitors. Ca2+ channel inhibitors such as D888, verapamil, gallopamil, bepridil, or diltiazem antagonize [3H]fluspirilene binding besides antagonizing (-)[3H]-D888 binding. Neuroleptics, especially those of the diphenylbutylpiperidine family, also antagonize both (-)[3H]D888 binding and [3H]fluspirilene binding. There is an excellent correlation between affinities found from [3H]fluspirilene binding experiments and those found from (-)[3H]D888 binding experiments. Analysis of the properties of these cross-inhibitions indicates that [3H]fluspirilene binds to a site that is not identical to that for phenylalkylamine derivatives (gallopamil, verapamil, diltiazem, and bepridil). Voltage-clamp experiments have shown that fluspirilene is an efficient inhibitor of the voltage dependent Ca2+ channel, achieving a half-maximal effect near 0.1-0.2 nM and nearly complete blockade at 1 nM. Fluspirilene blockade has little voltage dependence.

Full text

PDF
7514

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Borsotto M., Barhanin J., Fosset M., Lazdunski M. The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca2+ channel. Purification and subunit composition. J Biol Chem. 1985 Nov 15;260(26):14255–14263. [PubMed] [Google Scholar]
  2. Borsotto M., Barhanin J., Norman R. I., Lazdunski M. Purification of the dihydropyridine receptor of the voltage-dependent Ca2+ channel from skeletal muscle transverse tubules using (+) [3H]PN 200-110. Biochem Biophys Res Commun. 1984 Aug 16;122(3):1357–1366. doi: 10.1016/0006-291x(84)91241-5. [DOI] [PubMed] [Google Scholar]
  3. Carbone E., Lux H. D. A low voltage-activated, fully inactivating Ca channel in vertebrate sensory neurones. Nature. 1984 Aug 9;310(5977):501–502. doi: 10.1038/310501a0. [DOI] [PubMed] [Google Scholar]
  4. Cognard C., Lazdunski M., Romey G. Different types of Ca2+ channels in mammalian skeletal muscle cells in culture. Proc Natl Acad Sci U S A. 1986 Jan;83(2):517–521. doi: 10.1073/pnas.83.2.517. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cognard C., Romey G., Galizzi J. P., Fosset M., Lazdunski M. Dihydropyridine-sensitive Ca2+ channels in mammalian skeletal muscle cells in culture: electrophysiological properties and interactions with Ca2+ channel activator (Bay K8644) and inhibitor (PN 200-110). Proc Natl Acad Sci U S A. 1986 Mar;83(5):1518–1522. doi: 10.1073/pnas.83.5.1518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Curtis B. M., Catterall W. A. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochemistry. 1984 May 8;23(10):2113–2118. doi: 10.1021/bi00305a001. [DOI] [PubMed] [Google Scholar]
  7. Fosset M., Jaimovich E., Delpont E., Lazdunski M. [3H]nitrendipine receptors in skeletal muscle. J Biol Chem. 1983 May 25;258(10):6086–6092. [PubMed] [Google Scholar]
  8. Frangos H., Zissis N. P., Leontopoulos I., Diamantas N., Tsitouridis S., Gavriil I., Tsolis K. Double-blind therapeutic evaluation of fluspirilene compared with fluphenazine decanoate in chronic schizophrenics. Acta Psychiatr Scand. 1978 May;57(5):436–446. doi: 10.1111/j.1600-0447.1978.tb06912.x. [DOI] [PubMed] [Google Scholar]
  9. Frelin C., Vigne P., Lazdunski M. Na+ channels with high and low affinity tetrodotoxin binding sites in the mammalian skeletal muscle cell. Difference in functional properties and sequential appearance during rat skeletal myogenesis. J Biol Chem. 1983 Jun 25;258(12):7256–7259. [PubMed] [Google Scholar]
  10. Galizzi J. P., Borsotto M., Barhanin J., Fosset M., Lazdunski M. Characterization and photoaffinity labeling of receptor sites for the Ca2+ channel inhibitors d-cis-diltiazem, (+/-)-bepridil, desmethoxyverapamil, and (+)-PN 200-110 in skeletal muscle transverse tubule membranes. J Biol Chem. 1986 Jan 25;261(3):1393–1397. [PubMed] [Google Scholar]
  11. Galizzi J. P., Fosset M., Lazdunski M. Properties of receptors for the Ca2+-channel blocker verapamil in transverse-tubule membranes of skeletal muscle. Stereospecificity, effect of Ca2+ and other inorganic cations, evidence for two categories of sites and effect of nucleoside triphosphates. Eur J Biochem. 1984 Oct 15;144(2):211–215. doi: 10.1111/j.1432-1033.1984.tb08451.x. [DOI] [PubMed] [Google Scholar]
  12. Galizzi J. P., Fosset M., Lazdunski M. [3H] verapamil binding sites in skeletal muscle transverse tubule membranes. Biochem Biophys Res Commun. 1984 Jan 13;118(1):239–245. doi: 10.1016/0006-291x(84)91092-1. [DOI] [PubMed] [Google Scholar]
  13. Gould R. J., Murphy K. M., Reynolds I. J., Snyder S. H. Antischizophrenic drugs of the diphenylbutylpiperidine type act as calcium channel antagonists. Proc Natl Acad Sci U S A. 1983 Aug;80(16):5122–5125. doi: 10.1073/pnas.80.16.5122. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hamill O. P., Marty A., Neher E., Sakmann B., Sigworth F. J. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 1981 Aug;391(2):85–100. doi: 10.1007/BF00656997. [DOI] [PubMed] [Google Scholar]
  15. Hassel P. Experimental comparison of low doses of 1.5 mg fluspirilene and bromazepam in out-patients with psychovegetative disturbances. Pharmacopsychiatry. 1985 Sep;18(5):297–302. doi: 10.1055/s-2007-1017384. [DOI] [PubMed] [Google Scholar]
  16. Leysen J., Tollenaere J. P., Koch M. H., Laduron P. Differentiation of opiate and neuroleptic receptor binding in rat brain. Eur J Pharmacol. 1977 Jun 1;43(3):253–267. doi: 10.1016/0014-2999(77)90025-5. [DOI] [PubMed] [Google Scholar]
  17. Martres M. P., Sales N., Bouthenet M. L., Schwartz J. C. Localisation and pharmacological characterisation of D-2 dopamine receptors in rat cerebral neocortex and cerebellum using [125I]iodosulpride. Eur J Pharmacol. 1985 Dec 3;118(3):211–219. doi: 10.1016/0014-2999(85)90131-1. [DOI] [PubMed] [Google Scholar]
  18. Miller R. J., Freedman S. B. Are dihydropyridine binding sites voltage sensitive calcium channels? Life Sci. 1984 Mar 26;34(13):1205–1221. doi: 10.1016/0024-3205(84)90543-5. [DOI] [PubMed] [Google Scholar]
  19. Nilius B., Hess P., Lansman J. B., Tsien R. W. A novel type of cardiac calcium channel in ventricular cells. Nature. 1985 Aug 1;316(6027):443–446. doi: 10.1038/316443a0. [DOI] [PubMed] [Google Scholar]
  20. Nowycky M. C., Fox A. P., Tsien R. W. Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature. 1985 Aug 1;316(6027):440–443. doi: 10.1038/316440a0. [DOI] [PubMed] [Google Scholar]
  21. Pach J., Waniek W. Vergleichende Untersuchung zum Tranquilizereffekt von Fluspirilene und Diazepam. Pharmakopsychiatr Neuropsychopharmakol. 1976 Mar;9(2):61–66. doi: 10.1055/s-0028-1094479. [DOI] [PubMed] [Google Scholar]
  22. Quirion R., Lafaille F., Nair N. P. Comparative potencies of calcium channel antagonists and antischizophrenic drugs on central and peripheral calcium channel binding sites. J Pharm Pharmacol. 1985 Jun;37(6):437–440. doi: 10.1111/j.2042-7158.1985.tb03033.x. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES