Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 23;93(15):7612–7617. doi: 10.1073/pnas.93.15.7612

Increased tricarboxylic acid cycle flux in rat brain during forepaw stimulation detected with 1H[13C]NMR.

F Hyder 1, J R Chase 1, K L Behar 1, G F Mason 1, M Siddeek 1, D L Rothman 1, R G Shulman 1
PMCID: PMC38794  PMID: 8755523

Abstract

NMR spectroscopy was used to test recent proposals that the additional energy required for brain activation is provided through nonoxidative glycolysis. Using localized NMR spectroscopic methods, the rate of C4-glutamate isotopic turnover from infused [1-(13)C]glucose was measured in the somatosensory cortex of rat brain both at rest and during forepaw stimulation. Analysis of the glutamate turnover data using a mathematical model of cerebral glucose metabolism showed that the tricarboxylic acid cycle flux [(V(TCA)] increased from 0.49 +/- 0.03 at rest to 1.48 +/- 0.82 micromol/g/min during stimulation (P < 0.01). The minimum fraction of C4-glutamate derived from C1-glucose was approximately 75%, and this fraction was found in both the resting and stimulated rats. Hence, the percentage increase in oxidative cerebral metabolic rate of glucose use (CMRglc) equals the percentage increases in V(TCA) and cerebral metabolic rate of oxygen consumption (CMRO2). Comparison with previous work for the same rat model, which measured total CMRglc [Ueki, M., Linn, F. & Hossman, K. A. (1988) J. Cereb. Blood Flow Metab. 8, 486-4941, indicates that oxidative CMRglc supplies the majority of energy during sustained brain activation.

Full text

PDF
7617

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Behar K. L., Petroff O. A., Prichard J. W., Alger J. R., Shulman R. G. Detection of metabolites in rabbit brain by 13C NMR spectroscopy following administration of [1-13C]glucose. Magn Reson Med. 1986 Dec;3(6):911–920. doi: 10.1002/mrm.1910030611. [DOI] [PubMed] [Google Scholar]
  2. Chen W., Novotny E. J., Zhu X. H., Rothman D. L., Shulman R. G. Localized 1H NMR measurement of glucose consumption in the human brain during visual stimulation. Proc Natl Acad Sci U S A. 1993 Nov 1;90(21):9896–9900. doi: 10.1073/pnas.90.21.9896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. De Ryck M., Van Reempts J., Duytschaever H., Van Deuren B., Clincke G. Neocortical localization of tactile/proprioceptive limb placing reactions in the rat. Brain Res. 1992 Feb 21;573(1):44–60. doi: 10.1016/0006-8993(92)90112-m. [DOI] [PubMed] [Google Scholar]
  4. Dudley R. E., Nelson S. R., Samson F. Influence of chloralose on brain regional glucose utilization. Brain Res. 1982 Feb 4;233(1):173–180. doi: 10.1016/0006-8993(82)90938-6. [DOI] [PubMed] [Google Scholar]
  5. Fitzpatrick S. M., Hetherington H. P., Behar K. L., Shulman R. G. The flux from glucose to glutamate in the rat brain in vivo as determined by 1H-observed, 13C-edited NMR spectroscopy. J Cereb Blood Flow Metab. 1990 Mar;10(2):170–179. doi: 10.1038/jcbfm.1990.32. [DOI] [PubMed] [Google Scholar]
  6. Fox P. T., Raichle M. E. Focal physiological uncoupling of cerebral blood flow and oxidative metabolism during somatosensory stimulation in human subjects. Proc Natl Acad Sci U S A. 1986 Feb;83(4):1140–1144. doi: 10.1073/pnas.83.4.1140. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fox P. T., Raichle M. E., Mintun M. A., Dence C. Nonoxidative glucose consumption during focal physiologic neural activity. Science. 1988 Jul 22;241(4864):462–464. doi: 10.1126/science.3260686. [DOI] [PubMed] [Google Scholar]
  8. Frahm J., Krüger G., Merboldt K. D., Kleinschmidt A. Dynamic uncoupling and recoupling of perfusion and oxidative metabolism during focal brain activation in man. Magn Reson Med. 1996 Feb;35(2):143–148. doi: 10.1002/mrm.1910350202. [DOI] [PubMed] [Google Scholar]
  9. Gaitonde M. K., Evison E., Evans G. M. The rate of utilization of glucose via hexosemonophosphate shunt in brain. J Neurochem. 1983 Nov;41(5):1253–1260. doi: 10.1111/j.1471-4159.1983.tb00819.x. [DOI] [PubMed] [Google Scholar]
  10. Gruetter R. Automatic, localized in vivo adjustment of all first- and second-order shim coils. Magn Reson Med. 1993 Jun;29(6):804–811. doi: 10.1002/mrm.1910290613. [DOI] [PubMed] [Google Scholar]
  11. Hawkins R. A., Mans A. M., Davis D. W., Viña J. R., Hibbard L. S. Cerebral glucose use measured with [14C]glucose labeled in the 1, 2, or 6 position. Am J Physiol. 1985 Jan;248(1 Pt 1):C170–C176. doi: 10.1152/ajpcell.1985.248.1.C170. [DOI] [PubMed] [Google Scholar]
  12. Hyder F., Behar K. L., Martin M. A., Blamire A. M., Shulman R. G. Dynamic magnetic resonance imaging of the rat brain during forepaw stimulation. J Cereb Blood Flow Metab. 1994 Jul;14(4):649–655. doi: 10.1038/jcbfm.1994.81. [DOI] [PubMed] [Google Scholar]
  13. Hyder F., Rothman D. L., Blamire A. M. Image reconstruction of sequentially sampled echo-planar data. Magn Reson Imaging. 1995;13(1):97–103. doi: 10.1016/0730-725x(94)00068-e. [DOI] [PubMed] [Google Scholar]
  14. Mason G. F., Behar K. L., Rothman D. L., Shulman R. G. NMR determination of intracerebral glucose concentration and transport kinetics in rat brain. J Cereb Blood Flow Metab. 1992 May;12(3):448–455. doi: 10.1038/jcbfm.1992.62. [DOI] [PubMed] [Google Scholar]
  15. Mason G. F., Gruetter R., Rothman D. L., Behar K. L., Shulman R. G., Novotny E. J. Simultaneous determination of the rates of the TCA cycle, glucose utilization, alpha-ketoglutarate/glutamate exchange, and glutamine synthesis in human brain by NMR. J Cereb Blood Flow Metab. 1995 Jan;15(1):12–25. doi: 10.1038/jcbfm.1995.2. [DOI] [PubMed] [Google Scholar]
  16. Mason G. F., Rothman D. L., Behar K. L., Shulman R. G. NMR determination of the TCA cycle rate and alpha-ketoglutarate/glutamate exchange rate in rat brain. J Cereb Blood Flow Metab. 1992 May;12(3):434–447. doi: 10.1038/jcbfm.1992.61. [DOI] [PubMed] [Google Scholar]
  17. Ogawa S., Menon R. S., Tank D. W., Kim S. G., Merkle H., Ellermann J. M., Ugurbil K. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J. 1993 Mar;64(3):803–812. doi: 10.1016/S0006-3495(93)81441-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Pardridge W. M., Oldendorf W. H. Transport of metabolic substrates through the blood-brain barrier. J Neurochem. 1977 Jan;28(1):5–12. doi: 10.1111/j.1471-4159.1977.tb07702.x. [DOI] [PubMed] [Google Scholar]
  19. Prichard J., Rothman D., Novotny E., Petroff O., Kuwabara T., Avison M., Howseman A., Hanstock C., Shulman R. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci U S A. 1991 Jul 1;88(13):5829–5831. doi: 10.1073/pnas.88.13.5829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Rothman D. L., Behar K. L., Hetherington H. P., den Hollander J. A., Bendall M. R., Petroff O. A., Shulman R. G. 1H-Observe/13C-decouple spectroscopic measurements of lactate and glutamate in the rat brain in vivo. Proc Natl Acad Sci U S A. 1985 Mar;82(6):1633–1637. doi: 10.1073/pnas.82.6.1633. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Rothman D. L., Novotny E. J., Shulman G. I., Howseman A. M., Petroff O. A., Mason G., Nixon T., Hanstock C. C., Prichard J. W., Shulman R. G. 1H-[13C] NMR measurements of [4-13C]glutamate turnover in human brain. Proc Natl Acad Sci U S A. 1992 Oct 15;89(20):9603–9606. doi: 10.1073/pnas.89.20.9603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sappey-Marinier D., Calabrese G., Fein G., Hugg J. W., Biggins C., Weiner M. W. Effect of photic stimulation on human visual cortex lactate and phosphates using 1H and 31P magnetic resonance spectroscopy. J Cereb Blood Flow Metab. 1992 Jul;12(4):584–592. doi: 10.1038/jcbfm.1992.82. [DOI] [PubMed] [Google Scholar]
  23. Shulman R. G., Blamire A. M., Rothman D. L., McCarthy G. Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proc Natl Acad Sci U S A. 1993 Apr 15;90(8):3127–3133. doi: 10.1073/pnas.90.8.3127. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Ueki M., Linn F., Hossmann K. A. Functional activation of cerebral blood flow and metabolism before and after global ischemia of rat brain. J Cereb Blood Flow Metab. 1988 Aug;8(4):486–494. doi: 10.1038/jcbfm.1988.89. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES