Abstract
γ-Glutamyltranspeptidase activity was demonstrated in the membrane fraction of rabbit erythrocytes. The activity observed (with glutathione and various amino-acid acceptors) was similar in magnitude to that of the γ-glutamylcyclotransferase and γ-glutamylcysteine synthetase activities found in the soluble fraction of the cell. No transpeptidase activity was observed with either γ-glutamyl p-nitroanilide or oxidized glutathione in contrast to the rabbit-kidney enzyme for which these compounds and glutathione serve as substrates. Erythrocyte suspensions and hemolysates formed 5-oxoproline (pyroglutamate; pyrrolidone carboxylate); the rate of 5-oxoproline formation from glutathione by hemolysates was increased by addition of methionine. The findings indicate that 5-oxoproline is an end-product of glutathione metabolism in erythrocytes, and that 5-oxoproline passes out of the erythrocyte and is metabolized in other tissues. The observed rate of 5-oxoproline formation is consistent with the conclusion that the γ-glutamyltranspeptidase-cyclotransferase pathway, together with the synthesis of glutathione from glycine, cysteine, and glutamate, account for a large fraction of the observed amino-acid turnover of erythrocyte glutathione.
Keywords: pyroglutamate, pyrrolidone carboxylate, γ-glutamyl cycle, γ-glutamyl cyclotransferase
Full text
PDF![293](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/387989/05dc78a4fd72/pnas00055-0055.png)
![294](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/387989/74be42493a5c/pnas00055-0056.png)
![295](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/387989/f956df315623/pnas00055-0057.png)
![296](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/387989/833e161e31f4/pnas00055-0058.png)
![297](https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3026/387989/51d984e66693/pnas00055-0059.png)
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Adamson E. D., Szewczuk A., Connell G. E. Purification and properties of gamma-glutamyl cyclotransferase from pig liver. Can J Biochem. 1971 Feb;49(2):218–226. doi: 10.1139/o71-032. [DOI] [PubMed] [Google Scholar]
- Antonioli J. A., Christensen H. N. Differences in schedules of regression of transport systems during reticulocyte maturation. J Biol Chem. 1969 Mar 25;244(6):1505–1509. [PubMed] [Google Scholar]
- Ball C. R. Estimation and identification of thiols in rat spleen after cysteine or glutathione treatment: relevance to protection against nitrogen mustards. Biochem Pharmacol. 1966 Jul;15(7):809–816. doi: 10.1016/0006-2952(66)90157-2. [DOI] [PubMed] [Google Scholar]
- CONNELL G. E., HANES C. S. Enzymic formation of pyrrolidone carboxylic acid from gamma-glutamyl peptides. Nature. 1956 Feb 25;177(4504):377–378. doi: 10.1038/177377a0. [DOI] [PubMed] [Google Scholar]
- Flohé L. Die Glutathionperoxidase: Enzymologie und biologische Aspekte. Klin Wochenschr. 1971 Jun 15;49(12):669–683. doi: 10.1007/BF01487101. [DOI] [PubMed] [Google Scholar]
- HANES C. S., HIRD F. J. R., ISHERWOOD F. A. Enzymic transpeptidation reactions involving gamma-glutamyl peptides and alpha-amino-acyl peptides. Biochem J. 1952 Apr;51(1):25–35. doi: 10.1042/bj0510025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOCHBERG A., RIGBI M., DIMANT E. THE INCORPORATION IN VITRO OF GLYCINE AND L-GLUTAMIC ACID INTO GLUTATHIONE OF HUMAN ERYTHROCYTES. Biochim Biophys Acta. 1964 Sep 4;90:464–471. doi: 10.1016/0304-4165(64)90225-9. [DOI] [PubMed] [Google Scholar]
- Jackson R. C. Studies in the enzymology of glutathione metabolism in human erythrocytes. Biochem J. 1969 Feb;111(3):309–315. doi: 10.1042/bj1110309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Jacob H. S., Jandl J. H. Effects of sulfhydryl inhibition on red blood cells. 3. Glutathione in the regulation of the hexose monophosphate pathway. J Biol Chem. 1966 Sep 25;241(18):4243–4250. [PubMed] [Google Scholar]
- MILLS G. C. Hemoglobin catabolism. I. Glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin from oxidative breakdown. J Biol Chem. 1957 Nov;229(1):189–197. [PubMed] [Google Scholar]
- Majerus P. W., Brauner M. J., Smith M. B., Minnich V. Glutathione synthesis in human erythrocytes. II. Purification and properties of the enzymes of glutathione biosynthesis. J Clin Invest. 1971 Aug;50(8):1637–1643. doi: 10.1172/JCI106652. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meister A. On the enzymology of amino acid transport. Science. 1973 Apr 6;180(4081):33–39. doi: 10.1126/science.180.4081.33. [DOI] [PubMed] [Google Scholar]
- ORLOWSKI M., MEISTER A. GAMMA-GLUTAMYL-P-NITROANILIDE: A NEW CONVENIENT SUBSTRATE FOR DETERMINATION AND STUDY OF L- AND D-GAMMA-GLUTAMYLTRANSPEPTIDASE ACTIVITIES. Biochim Biophys Acta. 1963 Aug 6;73:679–681. doi: 10.1016/0006-3002(63)90348-2. [DOI] [PubMed] [Google Scholar]
- Orlowski M., Meister A. -Glutamyl cyclotransferase. Distribution, isozymic forms, and specificity. J Biol Chem. 1973 Apr 25;248(8):2836–2844. [PubMed] [Google Scholar]
- Orlowski M., Meister A. Isolation of highly purified gamma-glutamylcysteine synthetase from rat kidney. Biochemistry. 1971 Feb 2;10(3):372–380. doi: 10.1021/bi00779a003. [DOI] [PubMed] [Google Scholar]
- Orlowski M., Meister A. The gamma-glutamyl cycle: a possible transport system for amino acids. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1248–1255. doi: 10.1073/pnas.67.3.1248. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Orlowski M., Richman P. G., Meister A. Isolation and properties of gamma-L-glutamylcyclotransferase from human brain. Biochemistry. 1969 Mar;8(3):1048–1055. doi: 10.1021/bi00831a036. [DOI] [PubMed] [Google Scholar]
- PASCHER G. Die Wasserlöslichen Bestandteile der peripheren Hornschicht (Hautoberfläche); quantitative Analysen. III. Alpha-Pyrrolidoncarbonsäure. Arch Klin Exp Dermatol. 1956;203(3):234–238. [PubMed] [Google Scholar]
- Ross L. L., Barber L., Tate S. S., Meister A. Enzymes of the gamma-glutamyl cycle in the ciliary body and lens. Proc Natl Acad Sci U S A. 1973 Aug;70(8):2211–2214. doi: 10.1073/pnas.70.8.2211. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Srivastava S. K., Beutler E. The transport of oxidized glutathione from human erythrocytes. J Biol Chem. 1969 Jan 10;244(1):9–16. [PubMed] [Google Scholar]
- Tate S. S., Ross L. L., Meister A. The -glutamyl cycle in the choroid plexus: its possible function in amino acid transport. Proc Natl Acad Sci U S A. 1973 May;70(5):1447–1449. doi: 10.1073/pnas.70.5.1447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Werf P., Orlowski M., Meister A. Enzymatic conversion of 5-oxo-L-proline (L-pyrrolidone carboxylate) to L-glutamate coupled with cleavage of adenosine triphosphate to adenosine diphosphate, a reaction in the -glutamyl cycle. Proc Natl Acad Sci U S A. 1971 Dec;68(12):2982–2985. doi: 10.1073/pnas.68.12.2982. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Van der Werf P., Stephani R. A., Orlowski M., Meister A. Inhibition of 5-oxoprolinase by 2-imidazolidone-4-carboxylic acid. Proc Natl Acad Sci U S A. 1973 Mar;70(3):759–761. doi: 10.1073/pnas.70.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wendel A., Flohé L. Glutathionbiosynthese. II. Kinetische Versuche zum Reaktionsmechanismus der Glutathion-Synthetase (EC 6.3.2.3. Hoppe Seylers Z Physiol Chem. 1972 Apr;353(4):523–530. [PubMed] [Google Scholar]
- Wendel A., Schaich E., Weber U., Flohé L. Glutathionbiosynthese. I. Isolierung und Molekulargewichtsbestimmung der -L-Glutamyl-L-cystein: Glycin-Ligase (EC 6.3.2.3. Hoppe Seylers Z Physiol Chem. 1972 Apr;353(4):514–522. [PubMed] [Google Scholar]
- Winter C. G., Christensen H. N. Contrasts in neutral amino acid transport by rabbit erythrocytes and reticulocytes. J Biol Chem. 1965 Sep;240(9):3594–3600. [PubMed] [Google Scholar]