Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Feb;71(2):417–421. doi: 10.1073/pnas.71.2.417

Inhibition of Bacterial Growth by β-Chloro-D-Alanine

James M Manning 1, Nancy E Merrifield 1, Wanda M Jones 1, Emil C Gotschlich 1
PMCID: PMC388017  PMID: 4150023

Abstract

The D- and L-isomers of β-chloroalanine inhibit the growth of Diplococcus pneumoniae, Streptococcus pyogenes, Bacillus subtilis, and Escherichia coli. With pneumococcus the inhibition by β-chloro-D-alanine is completely prevented by either D-alanine or D-alanyl-D-alanine, while L-alanine is not effective in preventing the inhibition. The inhibition of growth by β-chloro-L-alanine is not affected by D-alanine and is only partially prevented by high concentrations of L-alanine. The intracellular free alanine in untreated E. coli and B. subtilis is about 95% in the D-configuration while the free intracellular alanine in both organisms after treatment with β-chloro-D-alanine is predominantly the L-isomer. These results suggested that the β-chloroamino acid inactivates alanine racemase (EC 5.1.1.1). Indeed, when extracts of E. coli or B. subtilis were treated with β-chloro-D-alanine, the activities of alanine racemase and of D-glutamate-D-alanine transaminase were found to be 90-95% inhibited. Studies with mice have shown that β-chloro-D-alanine is an effective antibacterial agent in vivo againt D. pneumoniae, S. pyogenes, and E. coli.

Keywords: cell wall, alanine racemase, D-amino acids

Full text

PDF
419

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arfin S. M., Koziell D. A. Inhibition of growth of Salmonella typhimurium and of threonine deaminase and transaminase B by beta-chloroalanine. J Bacteriol. 1971 Feb;105(2):519–522. doi: 10.1128/jb.105.2.519-522.1971. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Berberich R., Kaback M., Freese E. D-amino acids as inducers of L-alanine dehydrogenase in Bacillus subtilis. J Biol Chem. 1968 Mar 10;243(5):1006–1011. [PubMed] [Google Scholar]
  3. Frantz I. D. Growth Requirements of the Meningococcus. J Bacteriol. 1942 Jun;43(6):757–761. doi: 10.1128/jb.43.6.757-761.1942. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. KUN E., FANSHIER D. W., GRASSETTI D. R. Interaction between beta-fluoro-oxaloacetate and glutamate-aspartate transaminase of heart mitochondria. J Biol Chem. 1960 Feb;235:416–419. [PubMed] [Google Scholar]
  5. Kollonitsch J., Barash L., Kahan F. M., Kropp H. Letter: New antibacterial agent via photofluorination of a bacterial cell wall constituent. Nature. 1973 Jun 8;243(5406):346–347. doi: 10.1038/243346a0. [DOI] [PubMed] [Google Scholar]
  6. Lynch J. L., Neuhaus F. C. On the mechanism of action of the antibiotic O-carbamyld-serine in Streptococcus faecalis. J Bacteriol. 1966 Jan;91(1):449–460. doi: 10.1128/jb.91.1.449-460.1966. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Manning J. M., Khomutov R. M., Fasella P. The reaction of beta-chloroglutamic acid with glutamate-aspartate transaminase. Eur J Biochem. 1968 Jul;5(2):199–208. doi: 10.1111/j.1432-1033.1968.tb00358.x. [DOI] [PubMed] [Google Scholar]
  8. Martinez-Carrion M., Jenkins W. T. D-Alanine-D-glutamate transaminase. I. Purification and characterization. J Biol Chem. 1965 Sep;240(9):3538–3546. [PubMed] [Google Scholar]
  9. Morino Y., Okamoto M. Labeling of the active site of cytoplasmic aspartate aminotransferase by -chloro-L-alanine. Biochem Biophys Res Commun. 1973 Feb 20;50(4):1061–1067. doi: 10.1016/0006-291x(73)91514-3. [DOI] [PubMed] [Google Scholar]
  10. SNELL E. E., RADIN N. S., IKAWA M. The nature of D-alanine in lactic acid bacteria. J Biol Chem. 1955 Dec;217(2):803–818. [PubMed] [Google Scholar]
  11. SRINIVASAN N. G., CORRIGAN J. J., MEISTER A. BIOSYNTHESIS OF D-SERINE IN THE SILKWORM, BOMBYX MORI. J Biol Chem. 1965 Feb;240:796–800. [PubMed] [Google Scholar]
  12. Strominger J. L. Penicillin-sensitive enzymatic reactions in bacterial cell wall synthesis. Harvey Lect. 1968 1969;64:179–213. [PubMed] [Google Scholar]
  13. THORNE C. B., GOMEZ C. G., HOUSEWRIGHT R. D. Transamination of D-amino acids by Bacillus subtilis. J Bacteriol. 1955 Mar;69(3):357–362. doi: 10.1128/jb.69.3.357-362.1955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Tate S. S., Relyea N. M., Meister A. Interaction of L-aspartate beta-decarboxylase with beta-chloro-L-alanine. Beta-elimination reaction and active-site labeling. Biochemistry. 1969 Dec;8(12):5016–5021. doi: 10.1021/bi00840a051. [DOI] [PubMed] [Google Scholar]
  15. Tomasz A., Zanati E., Ziegler R. DNA uptake during genetic transformation and the growing zone of the cell envelope. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1848–1852. doi: 10.1073/pnas.68.8.1848. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Walsh C. T., Schonbrunn A., Abeles R. H. Studies on the mechanism of action of D-amino acid oxidase. Evidence for removal of substrate -hydrogen as a proton. J Biol Chem. 1971 Nov 25;246(22):6855–6866. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES