Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Mar;71(3):718–722. doi: 10.1073/pnas.71.3.718

Reversion of a Chinese Hamster Cell Auxotrophic Mutant

Lawrence A Chasin 1, Aileen Feldman 1, Marvin Konstam 1, Gail Urlaub 1
PMCID: PMC388084  PMID: 4362629

Abstract

A mutant cell strain derived from a Chinese hamster line by mutagenesis with ethylmethane sulfonate requires glycine for growth. In the wild type, glycine synthesis is catalyzed by serine hydroxymethyltransferase (EC 2.1.2.1). Cell fractionation by differential centrifugation and isopycnic sucrose gradient analysis reveals that the enzyme activity is found in both the mitochondrial and cytosol fractions. The specific activity in the mitochondrial fraction is about 20 times higher than in the cytosol, and is much more stable to thermal inactivation. The glycine-requiring mutant has lost all of the mitochondrial enzyme activity, while retaining the cytosol activity. The mutant is very stable but can be induced to revert by several chemical mutagens. One glycine-independent revertant induced by ethyl methane sulfonate was studied in detail. Serine hydroxymethyltransferase activity is again present in the mitochondrial fraction, at about [unk] of the wild-type level. However, the revertant mitochondrial enzyme exhibits an altered thermal sensitivity, with a half-life at 45° of 55 min as compared to 180 min in the wild type. The half-life for the cytosol enzyme in all three strains is 7 min. Mixing experiments demonstrate that the heat lability of the revertant enzyme is not due to a dissociable factor in the extract. The data are consistent with the idea that the original mutation occurred in the structural gene for one isozyme of the enzyme and that the revertant has undergone a second mutation in this gene, partially restoring enzyme activity.

Keywords: serine hydroxymethyltransferase, isozymes, somatic cell genetics, glycine

Full text

PDF
718

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albrecht A. M., Biedler J. L., Hutchison D. J. Two different species of dihydrofolate reductase in mammalian cells differentially resistant to amethopterin and methasquin. Cancer Res. 1972 Jul;32(7):1539–1546. [PubMed] [Google Scholar]
  2. Beaudet A. L., Roufa D. J., Caskey C. T. Mutations affecting the structure of hypoxanthine: guanine phosphoribosyltransferase in cultured Chinese hamster cells. Proc Natl Acad Sci U S A. 1973 Feb;70(2):320–324. doi: 10.1073/pnas.70.2.320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Borst P., Kroon A. M. Mitochondrial DNA: physicochemical properties, replication, and genetic function. Int Rev Cytol. 1969;26:107–190. doi: 10.1016/s0074-7696(08)61635-6. [DOI] [PubMed] [Google Scholar]
  4. Chan V. L., Whitmore G. F., Siminovitch L. Mammalian cells with altered forms of RNA polymerase II. Proc Natl Acad Sci U S A. 1972 Nov;69(11):3119–3123. doi: 10.1073/pnas.69.11.3119. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chasin L. A. The effect of ploidy on chemical mutagenesis in cultured Chinese hamster cells. J Cell Physiol. 1973 Oct;82(2):299–307. doi: 10.1002/jcp.1040820218. [DOI] [PubMed] [Google Scholar]
  6. Chu E. H., Malling H. V. Mammalian cell genetics. II. Chemical induction of specific locus mutations in Chinese hamster cells in vitro. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1306–1312. doi: 10.1073/pnas.61.4.1306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. De Duve C. Tissue fractionation. Past and present. J Cell Biol. 1971 Jul;50(1):20d–55d. [PubMed] [Google Scholar]
  8. Fujioka M. Purification and properties of serine hydroxymethylase from soluble and mitochondrial fractions of rabbit liver. Biochim Biophys Acta. 1969;185(2):338–349. doi: 10.1016/0005-2744(69)90427-6. [DOI] [PubMed] [Google Scholar]
  9. Galper J. B., Darnell J. E. Mitochondrial protein synthesis in HeLa cells. J Mol Biol. 1971 Apr 28;57(2):363–367. doi: 10.1016/0022-2836(71)90354-8. [DOI] [PubMed] [Google Scholar]
  10. HAM R. G. CLONAL GROWTH OF MAMMALIAN CELLS IN A CHEMICALLY DEFINED, SYNTHETIC MEDIUM. Proc Natl Acad Sci U S A. 1965 Feb;53:288–293. doi: 10.1073/pnas.53.2.288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Harris M. Mutation rates in cells at different ploidy levels. J Cell Physiol. 1971 Oct;78(2):177–184. doi: 10.1002/jcp.1040780204. [DOI] [PubMed] [Google Scholar]
  12. Kao F. T., Puck T. T. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1275–1281. doi: 10.1073/pnas.60.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Kao F. T., Puck T. T. Genetics of somatic mammalian cells. IX. Quantitation of mutagenesis by physical and chemical agents. J Cell Physiol. 1969 Dec;74(3):245–258. doi: 10.1002/jcp.1040740305. [DOI] [PubMed] [Google Scholar]
  14. Kao F., Chasin L., Puck T. T. Genetics of somatic mammalian cells. X. Complementation analysis of glycine-requiring mutants. Proc Natl Acad Sci U S A. 1969 Dec;64(4):1284–1291. doi: 10.1073/pnas.64.4.1284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  16. Mezger-Freed L. Effect of ploidy and mutagens on bromodeoxyuridine resistance in haploid and diploid frog cells. Nat New Biol. 1972 Feb 23;235(60):245–246. doi: 10.1038/newbio235245a0. [DOI] [PubMed] [Google Scholar]
  17. Nakano Y., Fujioka M., Wada H. Studies on serine hydroxymethylase isoenzymes from rat liver. Biochim Biophys Acta. 1968 Apr 24;159(1):19–26. doi: 10.1016/0005-2744(68)90240-4. [DOI] [PubMed] [Google Scholar]
  18. SZYBALSKI W. CHEMICAL REACTIVITY OF CHROMOSOMAL DNA AS RELATED TO MUTAGENICITY: STUDIES WITH HUMAN CELL LINES. Cold Spring Harb Symp Quant Biol. 1964;29:151–159. doi: 10.1101/sqb.1964.029.01.019. [DOI] [PubMed] [Google Scholar]
  19. Sato K., Slesinski R. S., Littlefield J. W. Chemical mutagenesis at the phosphoribosyltransferase locus in cultured human lymphoblasts. Proc Natl Acad Sci U S A. 1972 May;69(5):1244–1248. doi: 10.1073/pnas.69.5.1244. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Sherman F., Stewart J. W., Margoliash E., Parker J., Campbell W. The structural gene for yeast cytochrome C. Proc Natl Acad Sci U S A. 1966 Jun;55(6):1498–1504. doi: 10.1073/pnas.55.6.1498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Wang F. K., Koch J., Stokstad E. L. Folate coenzyme pattern, folate linked enzymes and methionine biosynthesis in rat liver mitochondria. Biochem Z. 1967 Jan 27;346(5):458–466. [PubMed] [Google Scholar]
  22. Yanofsky C., Ito J., Horn V. Amino acid replacements and the genetic code. Cold Spring Harb Symp Quant Biol. 1966;31:151–162. doi: 10.1101/sqb.1966.031.01.023. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES