Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Mar;71(3):723–726. doi: 10.1073/pnas.71.3.723

Parathyroid Hormone Receptors of Renal Cortex: Specific Binding of Biologically Active, 125I-Labeled Hormone and Relationship to Adenylate Cyclase Activation

Francis P Di Bella 1,2, Thomas P Douša 1,2, Sam S Miller 1,2, Claude D Arnaud 1,2
PMCID: PMC388085  PMID: 4362630

Abstract

Biologically active 125I-labeled bovine parathyroid hormone (prepared by electrolytic iodination) and its synthetic NH2-terminal (1-34) biologically active fragment bound rapidly and specifically to a purified plasma membrane preparation from bovine renal cortex. Binding of labeled intact hormone or labeled NH2-terminal (1-34) peptide was inhibited competitively by unlabeled (1-34) peptide in the same range of concentrations that activated renal cortical 3′:5′-adenylate cyclase (EC 4.6.1.1) in these membranes. The concentrations of synthetic (1-34) peptide for half-maximal inhibition of binding of labeled hormone as well as half-maximal activation of the enzyme were about 0.6 μM (2.5 μg/ml). Therefore it is likely that the binding activity studied represents a physiologically important renal receptor for parathyroid hormone.

Biologically inactive (oxidized) forms of parathyroid hormone and (1-34) NH2-terminal peptide as well as calcitonin, glucagon, insulin, and epinephrine failed to competitively inhibit the binding of labeled (1-34) parathyroid hormone or activate adenylate cyclase in the renal cortical membrane preparation.

Observations with the NH2-terminal (1-34) biologically active fragment of parathyroid hormone suggest that the COOH-terminal region of the molecule is not required for receptor binding.

Keywords: calcium metabolism, cyclic AMP, electrolytic iodination of peptides, synthetic bovine parathyroid hormone(1-34)

Full text

PDF
726

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arnaud C. D., Tsao H. S. Porcine calcitonin. Simple procedure for isolation in high yield. Biochemistry. 1969 Jan;8(1):449–456. doi: 10.1021/bi00829a061. [DOI] [PubMed] [Google Scholar]
  2. Berson S. A., Yalow R. S. Iodoinsulin used to determine specific activity of iodine-131. Science. 1966 Apr 8;152(3719):205–207. doi: 10.1126/science.152.3719.205. [DOI] [PubMed] [Google Scholar]
  3. Brewer H. B., Jr, Ronan R. Bovine parathyroid hormone: amino acid sequence. Proc Natl Acad Sci U S A. 1970 Dec;67(4):1862–1869. doi: 10.1073/pnas.67.4.1862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buckle R. M., Potts J. T., Jr Assessment of damage to I-131-labeled parathyroid hormone by chromatoelectrophoresis and adsorption onto dextran-charcoal. J Lab Clin Med. 1970 Jul;76(1):46–53. [PubMed] [Google Scholar]
  5. Bär H. P., Hechter O. Adenyl cyclase assay in fat cell ghosts. Anal Biochem. 1969 Jun;29(3):476–489. doi: 10.1016/0003-2697(69)90332-7. [DOI] [PubMed] [Google Scholar]
  6. Chase L. R., Aurbach G. D. Parathyroid function and the renal excretion of 3'5'-adenylic acid. Proc Natl Acad Sci U S A. 1967 Aug;58(2):518–525. doi: 10.1073/pnas.58.2.518. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Chase L. R., Aurbach G. D. Renal adenyl cyclase: anatomically separate sites for parathyroid hormone and vasopressin. Science. 1968 Feb 2;159(3814):545–547. doi: 10.1126/science.159.3814.545. [DOI] [PubMed] [Google Scholar]
  8. Dousa T., Hechter O., Schwartz I. L., Walter R. Neurohypophyseal hormone-responsive adenylate cyclase from mammalian kidney. Proc Natl Acad Sci U S A. 1971 Aug;68(8):1693–1697. doi: 10.1073/pnas.68.8.1693. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dousa T., Rychlík I. The effect of parathyroid hormone on adenyl cyclase in rat kidney. Biochim Biophys Acta. 1968 Jun 24;158(3):484–486. doi: 10.1016/0304-4165(68)90309-7. [DOI] [PubMed] [Google Scholar]
  10. Fitzpatrick D. F., Davenport G. R., Forte L., Landon E. J. Characterization of plasma membrane proteins in mammalian kidney. I. Preparation of a membrane fraction and separation of the protein. J Biol Chem. 1969 Jul 10;244(13):3561–3569. [PubMed] [Google Scholar]
  11. GREENWOOD F. C., HUNTER W. M., GLOVER J. S. THE PREPARATION OF I-131-LABELLED HUMAN GROWTH HORMONE OF HIGH SPECIFIC RADIOACTIVITY. Biochem J. 1963 Oct;89:114–123. doi: 10.1042/bj0890114. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  13. Marx S. J., Fedak S. A., Aurbach G. D. Preparation and characterization of a hormone-responsive renal plasma membrane fraction. J Biol Chem. 1972 Nov 10;247(21):6913–6918. [PubMed] [Google Scholar]
  14. McKenzie S. G., Bär H. P. On the mechanism of adenyl cyclase inhibition by adenosine. Can J Physiol Pharmacol. 1973 Mar;51(3):190–196. doi: 10.1139/y73-027. [DOI] [PubMed] [Google Scholar]
  15. Melson G. L., Chase L. R., Aurbach G. D. Parathyroid hormone-sensitive adenyl cyclase in isolated renal tubules. Endocrinology. 1970 Mar;86(3):511–518. doi: 10.1210/endo-86-3-511. [DOI] [PubMed] [Google Scholar]
  16. Nagata N., Rasmussen H. Parathyroid hormone and renal cell metabolism. Biochemistry. 1968 Oct;7(10):3728–3733. doi: 10.1021/bi00850a053. [DOI] [PubMed] [Google Scholar]
  17. Potts J. T., Jr, Murray T. M., Peacock M., Niall H. D., Tregear G. W., Keutmann H. T., Powell D., Deftos L. J. Parathyroid hormone: sequence, synthesis, immunoassay studies. Am J Med. 1971 May;50(5):639–649. doi: 10.1016/0002-9343(71)90119-7. [DOI] [PubMed] [Google Scholar]
  18. Potts J. T., Jr, Tregear G. W., Keutmann H. T., Niall H. D., Sauer R., Deftos L. J., Dawson B. F., Hogan M. L., Aurbach G. D. Synthesis of a biologically active N-terminal tetratriacontapeptide of parathyroid hormone. Proc Natl Acad Sci U S A. 1971 Jan;68(1):63–67. doi: 10.1073/pnas.68.1.63. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rasmussen H., Tenenhouse A. Cyclic adenosine monophosphate, CA++, and membranes. Proc Natl Acad Sci U S A. 1968 Apr;59(4):1364–1370. doi: 10.1073/pnas.59.4.1364. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Robison G. A., Butcher R. W., Sutherland E. W. Cyclic AMP. Annu Rev Biochem. 1968;37:149–174. doi: 10.1146/annurev.bi.37.070168.001053. [DOI] [PubMed] [Google Scholar]
  21. Rodbell M., Krans H. M., Pohl S. L., Birnbaumer L. The glucagon-sensitive adenyl cyclase system in plasma membranes of rat liver. 3. Binding of glucagon: method of assay and specificity. J Biol Chem. 1971 Mar 25;246(6):1861–1871. [PubMed] [Google Scholar]
  22. SAMIY A. H., HIRSCH P. F., RAMSAY A. G. LOCALIZATION OF PHOSPHATURIC EFFECT OF PARATHYROID HORMONE IN NEPHRON OF THE DOG. Am J Physiol. 1965 Jan;208:73–77. doi: 10.1152/ajplegacy.1965.208.1.73. [DOI] [PubMed] [Google Scholar]
  23. Sammon P. J., Brand J. S., Neuman W. F., Raisz L. G. Metabolism of labeled parathyroid hormone. I. Preparation of biologically active I-125-labeled parathyroid hormone. Endocrinology. 1973 Jun;92(6):1596–1603. doi: 10.1210/endo-92-6-1596. [DOI] [PubMed] [Google Scholar]
  24. TASHJIAN A. H., Jr, ONTJES D. A., MUNSON P. L. ALKYLATION AND OXIDATION OF METHIONINE IN BOVINE PARATHYROID HORMONE: EFFECTS ON HORMONAL ACTIVITY AND ANTIGENICITY. Biochemistry. 1964 Aug;3:1175–1182. doi: 10.1021/bi00896a029. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES