Coronary heart disease affects approximately 15.4 million individuals in the US1 and is one of the main causes of mortality and morbidity.1 A familial component contributes to cardiovascular disease (CVD) susceptibility,2 but it was not until the emergence of genome-wide association studies (GWAS) that genetic loci have been identified that displayed consistent associations with coronary artery disease (CAD) across multiple cohorts. The present article describes recent advances in the understanding of the genetic basis of CAD.
Main results from genome-wide association studies and recent gene-centric approaches
Family2 and twin studies3 provided convincing evidence that CAD clusters in families and has a heritable component.2-5 However, the delineation of the specific genetic architecture predisposing to CAD has been challenging, with initial candidate gene approaches yielding inconsistent results.6 In contrast to candidate gene approaches which focus on genetic variation in genes whose gene products are known to play an important role in cardiovascular physiology, GWAS assess simultaneously the association with CAD of hundreds of thousands of genetic variants distributed across the whole genome. Therefore, GWAS represent an essentially unbiased approach that is not limited by the current (patho)physiological understanding of CVD, and bears the potential of discovering completely new molecular mechanisms predisposing to CAD.
In 2007, the first GWAS for CAD were published.7-9 The main finding was a locus on chromosome 9p21, which is still the most consistently associated CAD locus to date.10 Subsequent studies revealed that this locus is related to a broad spectrum of vascular phenotypes, including e.g., CAD and myocardial infarction,7-9 coronary artery calcification,11 peripheral artery disease,12, 13 and abdominal aortic aneurysm.14 In order to increase power for the detection of genetic variants with smaller effect sizes, large consortia have been built which combine genetic-epidemiological data from multiple cohorts and ten-thousands of participants. Examples are the CARDIoGRAM (Coronary ARtery DIsease Genome-Wide Replication And Meta-Analysis)15 and the Coronary Artery Disease (C4D) Genetics consortium.16 Such consortia identified multiple additional loci associated with CAD and MI.16-23 Complementary to the genome-wide approaches, also candidate gene-based and gene centric approaches are being evaluated in a coordinated fashion, for example within the CARe project (Candidate Gene Association Resource)24 or the IBC 50k CAD Consortium.25 Furthermore, the Metabochip,26 a custom array with approximately 200.000 genetic variants associated with cardio-metabolic traits in prior analyses, has been assessed in the context of CAD.20 To date, 50 genetic loci associated with CAD on a genome-wide level (p<5×10−8) have been reported (Table). In aggregate, these loci explain approximately 10% of the heritability of CAD,17, 20 still leaving most of the CAD heritability unexplained. Interestingly, most genome-wide significant hits were not related to traditional risk factors,16, 20, 27 underscoring the potential of GWAS to identify previously unknown genomic regions and biological pathways that contribute to disease susceptibility. The main traditional risk factors which show some evidence for association with CAD-associated SNPs are lipid and blood pressure traits.17, 20
Table 1.
Band | rs-number | Gene(s) | Risk allele | Risk allele frequency | OR (95% CI) | p-Value | Reference (examples) |
---|---|---|---|---|---|---|---|
1p13.3 | rs599839 | SORT1 | A | 0.77 | 1.29 (1.18-1.40)7 | 4.05 × 10−9 | 7, 17, 22 |
1p32.2 | rs17114036 | PPAP2B | A | 0.91 | 1.17 (1.13-1.22)17 | 3.81 × 10−19 | 17 |
1p32.3 | rs11206510 | PCSK9 | T | 0.81 | 1.15 (1.10-1.21)22 | 9.6 × 10−9 | 22 |
1q21.3 | rs4845625 | IL6R | T | 0.47 | 1.04 (1.02-1.07)20 | 3.55 × 10−8 | 20 |
1q41 | rs17465637 | MIA3 | C | 0.72 | 1.14 (1.10-1.19)22 | 1.4 × 10−9 | 7, 17, 22 |
2p11.2 | rs1561198 | VAMP5-VAMP8-GGCX | A | 0.45 | 1.05 (1.03-1.07)20 | 4.48 × 10−9 | 20 |
2p21 | rs6544713 | ABCG5-ABCG8 | T | 0.30 | 1.06 (1.04-1.09)20 | 8.72 × 10−10 | 20, 25, 55 |
2p24.1 | rs2123536 | TTC32-WDR35 | T | 0.39 | 1.12 (1.08-1.16)19 | 6.83 × 10−11 | 19 |
2p24.1 | rs515135 | APOB | G | 0.83 | 1.08 (1.05-1.11)20 | 4.80 × 10−10 | 20 |
2q22.3 | rs2252641 | ZEB2-AC074093.1 | G | 0.46 | 1.04(1.02-1.06)20 | 3.66 × 10−8 | 20 |
2q33.2 | rs6725887 | WDR12 | C | 0.14 | 1.17 (1.11-1.23)22 | 1.3 × 10−8 | 17, 22 |
3q22.3 | rs2306374 | MRAS | C | 0.18 | 1.12 (1.07-1.16)17 | 3.34 × 10−8 | 17, 21 |
4q31.22 | rs1878406 | EDNRA | T | 0.15 | 1.06 (1.02-1.11)20 | 2.54 × 10−8 | 20 |
4q32.1 | rs7692387 | GUCY1A3 | G | 0.81 | 1.06 (1.03-1.09)20 | 4.57 × 10−9 | 19, 20 |
5q31.1 | rs273909 | SLC22A4-SLC22A5 | C | 0.14 | 1.09 (1.05-1.12)20 | 1.43 × 10−8 | 20 |
6p21.2 | rs10947789 | KCNK5 | T | 0.76 | 1.06 (1.03-1.08)20 | 1.63 × 10−8 | 20 |
6p21.31 | rs17609940 | ANKS1A | G | 0.75 | 1.07 (1.05-1.10)17 | 1.36 × 10−8 | 17 |
6p21.32 | rs9268402 | C6orf10-BTNL2 | G | 0.59 | 1.16 (1.12-1.20)19 | 2.77 × 10−15 | 19 |
6p21.33 | rs3869109 | HLA-C, HLA-B, HCG27 | G | 0.55 | 1 1456* | 1.12 × 10−9 | 56 |
6p24.1 | rs12526453 | PHACTR1 | C | 0.65 | 1.12 (1.08-1.17) 22 | 1.3 × 10−9 | 17, 22 |
6p24.1 | rs6903956 | C6orf105 | A | 0.07 | 1.65 (1.44-1.90)57 | 2.55 × 10−13 | 57 |
6q23.2 | rs12190287 | TCF21 | C | 0.62 | 1.08 (1.06-1.10)17 | 1.07 × 10−12 | 17 |
6q25.3 | rs3798220 | LPA | C | 0.02 | 1.51 (1.33-1.70)17 | 3.00 × 10−11 | 17, 23 |
6q26 | rs4252120 | PLG | T | 0.73 | 1.06 (1.03-1.09)20 | 5.00 × 10−9 | 20 |
7p21.1 | rs2023938 | HDAC9 | G | 0.10 | 1.07 (1.04-1.11)20 | 4.94 × 10−8 | 20 |
7q22.3 | rs10953541 | BCAP29 | C | 0.8 | 1.08 (1.05-1.11)16 | 3.12 × 10−8 | 16 |
7q32.2 | rs11556924 | ZC3HC1 | C | 0.62 | 1.09 (1.07-1.12)17 | 9.18 × 10−18 | 17 |
8p21.3 | rs264 | LPL | G | 0.86 | 1.05 (1.02-1.08)20 | 5.06 × 10−9 | 20 |
8q24.13 | rs2954029 | TRIB1 | A | 0.55 | 1.04 (1.02-1.06)20 | 4.53 × 10−8 | 20, 25 |
9p21.3 | rs1333049 | CDKN2A, CDKN2B | C | 0.47 | 1.37 (1.26-1.48)7 | 1.80 × 10−14 | 7-9 |
9q34.2 | rs579459 | ABO | C | 0.21 | 1.10 (1.07-1.13)17 | 4.08 × 10−14 | 17, 55, 58 |
10p11.23 | rs2505083 | KIAA1462 | C | 0.38 | 1.07 (1.04-1.09)16 | 3.87 × 10−8 | 16, 18 |
10q11.21 | rs1746048 | CXCL12 | C | 0.84 | 1.17 (1.11-1.24)22 | 7.4 × 10−9 | 7, 17, 22 |
10q23.31 | rs1412444 | LIPA | T | 0.42 | 1.09 (1.07-1.12)16 | 2.76 × 10−13 | 16, 25, 59 |
10q24.32 | rs12413409 | CYP17A1, CNNM2,NT5C2 | G | 0.89 | 1.12 (1.08-1.16)17 | 1.03 × 10−9 | 17 |
11q22.3 | rs974819 | PDGFD | T | 0.32 | 1.07 (1.04-1.09)16 | 2.41 × 10−9 | 16 |
11q23.3 | rs964184 | ZNF259, APOA5-A4-C3-A1 | G | 0.13 | 1.13 (1.10-1.16)17 | 1.02 × 10−17 | 17 |
12q21.33 | rs7136259 | ATP2B1 | T | 0.39 | 1.11 (1.08-1.15)19 | 5.68 × 10−10 | 19 |
12q24.12 | rs3184504 | SH2B3 | T | 0.38 | 1.13 (1.08-1.18)60 | 8.6 × 10−8 | 20, 60 |
13q12.3 | rs9319428 | FLT1 | A | 0.32 | 1.05 (1.03-1.08)20 | 1.01 × 10−8 | 20 |
13q34 | rs4773144 | COL4A1,COL4A2 | G | 0.44 | 1.07 (1.05-1.09)17 | 3.84 × 10−9 | 17 |
14q32.2 | rs2895811 | HHIPL1 | C | 0.43 | 1.07 (1.05-1.10)17 | 1.14 × 10−10 | 17 |
15q25.1 | rs3825807 | ADAMTS7 | A | 0.57 | 1.08 (1.06-1.10)17 | 1.07 × 10−12 | 16, 17, 58 |
15q26.1 | rs17514846 | FURIN-FES | A | 0.44 | 1.05 (1.03-1.08)20 | 4.49 × 10−10 | 20 |
17p11.2 | rs12936587 | RASD1,SMCR3,PEMT | G | 0.56 | 1.07 (1.05-1.09)17 | 4.45 × 10−10 | 17 |
17p13.3 | rs216172 | SMG6, SRR | C | 0.37 | 1.07 (1.05-1.09)17 | 1.15 × 10−9 | 17 |
17q21.32 | rs46522 | UBE2Z, GIP,ATP5G1, SNF8 | T | 0.53 | 1.06 (1.04-1.08)17 | 1.81 × 10−8 | 17 |
19p13.2 | rs1122608 | LDLR | G | 0.75 | 1.15 (1.10-1.20)22 | 1.9 × 10−9 | 17, 22 |
19q13.32 | rs2075650 | APOE/TOMM40 | G | 0.14 | 1.14 (1.09-1.19)25 | 3.2 × 10−8 | 20, 25 |
21q22.11 | rs9982601 | SLC5A3-MRPS6-KCNE2 | T | 0.13 | 1.20 (1.14-1.27)22 | 6.4 × 10−11 | 17, 22 |
The 95% confidence interval of the odds ratio was not numerically provided.
In each row, data on rsnumber, gene(s) at the locus, risk allele, risk allele frequency and p-value, were obtained from the same reference as the odds ratio
Genetic predictors in patients with established CAD
Genetic analyses were not restricted to prevalent or incident CAD. Single nucleotide polymorphisms (SNPs) are increasingly evaluated as prognostic factors in patient with established CAD. Genetic variation at 1p13.3 and 1q41 (both loci have been associated with prevalent CAD in prior GWAS7, 22) were associated with cardiovascular outcomes in patient with established CAD (including readmission for CVD and survival)28 and genetic variation in the thrombomodulin gene was associated with long-term survival in patients undergoing bypass surgery.29 These findings underscore the concept that a common or overlapping genetic architecture might influence several stages along the atherosclerotic disease spectrum. This premise is further supported by the observation that certain genetic loci are related to several vascular traits, as has been reported e.g. for the chromosome 9p21 locus (see above). On a parallel note, genetic variants also contribute to the susceptibility for sudden cardiac death in patients with established CAD, including SNPs in the genes CASQ2, GPD1L and NOS1AP.30
Thus, the genetic predisposition is not only relevant for the development of CAD, but also emerged as potential prognostic factor in patients with established disease. It needs to be assessed, though, whether genetic information is useful to refine clinical decisions when treating patients with CAD, a premise that requires further investigations. So far, data on the efficacy of genotype-based treatment strategies vs. conventional care from randomized controlled trials are often lacking. Newer initiatives are addressing this gap in our scientific knowledge for some clinical settings.31
Impact of CAD phenotype definition on effect estimates in genetic association studies
Since large consortia have been built in order to detect genetic variants with smaller effect sizes, it emerged as an important question whether and how different phenotype definitions for CAD in such combined or meta analyses might affect the results. Some prior studies reported indeed slightly stronger genetic association signals in patients with angiographically confirmed CAD, as compared to CAD patients without angiographic data.17 Furthermore, family-based analyses revealed different heritability estimates for distinct sub-phenotypes of CAD.32 On the other hand, there is a remarkable consistency in genetic association findings across cohorts (with varying phenotype definitions), underscoring that different manifestations of CAD might have a common genetic architecture. Kitsios and colleagues reanalyzed data from 965 individual studies assessing the association of 32 genetic variants (in 22 genes) with CAD. The authors observed substantial variability in the phenotype definitions used across studies (for both, cases and controls),33 but these differences contributed relatively little to the overall between-study heterogeneity. Furthermore, more stringent phenotype definitions (e. g. acute coronary syndrome or angiographically documented CAD) did not lead to systematically different association measures in genetic analyses as compared to broader definitions of the disease.33 The authors conclude that all available “evidence for CAD phenotypes should be considered” in genetic meta-analyses.33
Replicated and consistent association signals from genetic-epidemiological studies stimulate further research. Conceptually, this work-up can be categorized in at least 3 main areas of research. First, the identification of the causal genetic variant at a given locus and the elucidation of the precise biological mechanism by which a genetic locus leads to increased CAD susceptibility. Second, the application of genetic variants in risk prediction models to forecast more precisely the onset or the natural course of disease or to predict more accurately the response to a given treatment. Third, identifying newer therapeutic targets and conducting randomized trials focusing on these targets.
Functional work-up of GWAS results
To clarify the biological mechanisms responsible for a genetic association signal, genetic-epidemiological information is increasingly combined with data from other high-throughput OMICs technologies and with cellular or animal experiments. Several studies assessed whether significantly associated CAD-SNPs affect the expression of nearby genes in different tissues.16, 20, 34 Additional work-up strategies include the identification of the causal variant at a given locus through fine-mapping, or through knock-down or overexpression experiments of the putative causal genetic variant in cellular and animal models, e.g. to assess potential consequences of the genetic variant on physiological traits (e.g., lipid levels).
In a landmark article, Musunuru35 and colleagues elucidated much of the biological mechanism how a newly discovered locus on chromosome 1p13 contributes to CAD susceptibility. In prior analyses, non-coding SNPs at 1p13 were associated with an adverse lipid profile and the risk of CAD.7, 22, 36 Through fine mapping, a close survey of genetic variation around the top SNPs in a given locus, and a series of experiments, the authors identified rs12740374 as the putative causal variant of the locus. This variant is located within a transcription factor binding site. The CAD risk allele alters this binding site and, thereby, affects the expression of the SORT1 gene in the liver.35 The SORT1 gene product sortilin 1 modulates cellular LDL uptake in vitro37 and secretion of VLDL particles in experimental settings35, thereby influencing circulating lipid concentrations.38 Thus, the current evidence indicates that the genetic risk variant at the 1p13 locus leads to impaired SORT1 expression in the liver, higher hepatic VLDL secretion and reduced cellular LDL uptake, and is - as a consequence - associated with higher circulating LDL levels and, thereby, increases CAD risk.38 This work was one of the first examples, how GWAS and subsequent functional analyses identified an entirely new molecular mechanism affecting circulating lipid levels and predisposition to CAD. The sortilin pathway could be a potential therapeutic target to prevent dyslipidemia and reduce CAD risk.
Use of genetic information for risk prediction and assessment of clinical utility
The use of genetic information to more accurately predict i) the development of diseases in asymptomatic individuals, ii) the natural course of disease, or iii) the response to therapy in patient with established disease, belonged to the key motivations for the human genome project and for the efforts to unravel the genetic architecture of diseases. In this context, it is of central interest, whether genetic variants add information to such prediction models beyond established risk factors. Different performance measures have been established to assess the incremental contribution of biomarkers (including genetic variation).39 Important indices include calibration (how well agree predicted and observed absolute disease risks), discrimination and reclassification.39 Discrimination refers to the ability to distinguish individuals who develop the disease from those who will not,39 and reclassification quantifies how many individuals (with or without the outcome of interest) will be categorized in a more accurate risk category if genetic information is added to models with established risk factors. Given the complexity of the genetic architecture of CAD with several variants conferring modest increases in relative disease risk (Table), genetic information is often aggregated using genetic risk scores which sum-up and weight the number of risk alleles carried by each individual. In general, genetic risk scores for CAD are independently associated with CAD, even after adjustment for classic CVD risk factors.40-43 This is not surprising, given that many of the CAD-associated risk variants are not related to traditional risk factors.27 However, genetic risk scores only modestly improved discrimination (if at all) and reclassification.40-42, 44, 45
Analyses in the Atherosclerosis Risk in Communities (ARIC) study revealed that after adding genetic information from the 9p21 locus to a prediction model based on established risk factors, 12-13% of participants in the intermediate risk category (10-years risk, 5%-20%) are reclassified.46 The authors emphasized that this reclassification might affect treatment decisions and treatment goals, e. g. for LDL-cholesterol, in a relevant proportion of individuals.46 However, future studies need to establish whether such reclassification and alternative treatment strategies based on genetic variation ultimately improve patient outcomes.39, 47
One strategy to assess the clinical utility of genetic biomarkers is to conduct a randomized trial where a treatment strategy based on genetic information is compared to usual care (where no genetic information is considered).39, 47
Conceptually, knowledge of genetic variation may improve patient outcome in several ways, not just via better medical decisions by the physician.47 Knowledge of an increased genetic susceptibility to CAD (as reflected by a high genetic risk score) might also lead to higher compliance and better adherence to risk factor therapy by the patient,47, 48 a premise that is currently being investigated in an ongoing clinical trial.48 In patients referred to a preventive cardiology clinic with an estimated 10-year CVD-risk ≥6% or an estimated ≥20% CVD-risk over 30 years, the investigators will assess whether knowledge of the genetic risk score by the patient further improves risk factor levels (e.g. LDL levels, blood pressure) during short-term follow-up, even though patient management and treatment decisions are not influenced by the results of the genetic risk score; the results of the genetic risk score are disclosed after the treatment decisions have been made.48
Currently, the use of genetic information to modify therapeutic strategies is not broadly recommended because of the lack of efficacy data from clinical trials in most clinical settings. Emerging clinical trials in this field will provide important insights into the potential clinical utility of genetic markers.31
Furthermore, due to their modest effect sizes,49 genetic markers may not be suitable as screening tools in asymptomatic individuals at present.
Conclusion
GWAS and collaborative gene-centric approaches – in conjunction with other large scale OMICs technologies – substantially improved our understanding of the molecular basis of CAD by identifying consistently associated genetic variant and by elucidating some of the underlying patho-mechanisms. However, the effect sizes per risk allele were modest (Table) leaving much of the CAD heritability still unexplained. GWAS and candidate gene approaches typically focused on relatively common SNPs with a minor allele frequency >5%. More recently, new sequencing technologies enable whole exome (where all protein coding segments of the DNA are analyzed) or whole genome sequencing at declining costs and facilitate more comprehensive analyses of rare genetic variants (minor allele frequency <1%) to assess their significance for CAD.50 Furthermore, it is increasingly recognized that cardiovascular disease processes are governed by complex biological networks.51 Important technical advances form the basis to measure several components of such biological networks. Therefore, genetic information will increasingly be analyzed in the context of complementary gene expression, proteomic and metabolomic data. As an example, data on Protein-Protein-Interactions can be considered in the analyses of GWAS and by combining information on Protein-Protein-Interactions with GWAS data, new groups of genes can be identified that might be relevant for the pathogenesis of CAD,52 even though the SNPs in isolation do not reach genome-wide statistical significance.52 Additional research efforts include analyses of epigenetic modifications,53 and of interactions between genes or between genes and environmental factors. Furthermore, modifiers of gene expression and protein processing are increasingly analyzed. Ideally, these different components are evaluated in combined analytical approaches to elucidate entire biological systems governing physiological function of the cardiovascular system.51
In that context, repeated (at different points in time) and comprehensive molecular phenotyping of large samples under steady state conditions as well as in the context of challenges that cause perturbations of physiological traits, are important requisites to improve our understanding of the biological networks underlying cardiovascular function and disease development.54
Beyond the identification of new disease-associated biomarker profiles, systematic analyses are needed to elucidate the underlying biological mechanisms; and intensified research is required to assess the potential clinical utility of genetic variants in patients with established CAD and their potential use as screening tools in asymptomatic individuals.
Acknowledgments
Funding Sources: This work was supported by the National Heart, Lung, and Blood Institute's Framingham Heart Study (contract N01-HC-25195)
Footnotes
Disclosures: None
Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Contributor Information
Wolfgang Lieb, Institute of Epidemiology, Christian-Albrechts-Universität Kiel, Kiel, Germany.
Ramachandran S. Vasan, The Framingham Heart Study, 73 Mount Wayte Avenue, Framingham MA, Boston University School of Medicine, Section of Preventive Medicine.
References
- 1.Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Borden WB, Bravata DM, Dai S, Ford ES, Fox CS, Franco S, Fullerton HJ, Gillespie C, Hailpern SM, Heit JA, Howard VJ, Huffman MD, Kissela BM, Kittner SJ, Lackland DT, Lichtman JH, Lisabeth LD, Magid D, Marcus GM, Marelli A, Matchar DB, McGuire DK, Mohler ER, Moy CS, Mussolino ME, Nichol G, Paynter NP, Schreiner PJ, Sorlie PD, Stein J, Turan TN, Virani SS, Wong ND, Woo D, Turner MB. Executive summary: Heart disease and stroke statistics--2013 update: A report from the american heart association. Circulation. 2013;127:143–152. doi: 10.1161/CIR.0b013e318282ab8f. [DOI] [PubMed] [Google Scholar]
- 2.Lloyd-Jones DM, Nam BH, D'Agostino RB, Sr., Levy D, Murabito JM, Wang TJ, Wilson PW, O'Donnell CJ. Parental cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults: A prospective study of parents and offspring. JAMA. 2004;291:2204–2211. doi: 10.1001/jama.291.18.2204. [DOI] [PubMed] [Google Scholar]
- 3.Marenberg ME, Risch N, Berkman LF, Floderus B, de Faire U. Genetic susceptibility to death from coronary heart disease in a study of twins. N Engl J Med. 1994;330:1041–1046. doi: 10.1056/NEJM199404143301503. [DOI] [PubMed] [Google Scholar]
- 4.Murabito JM, Pencina MJ, Nam BH, D'Agostino RB, Sr., Wang TJ, Lloyd-Jones D, Wilson PW, O'Donnell CJ. Sibling cardiovascular disease as a risk factor for cardiovascular disease in middle-aged adults. JAMA. 2005;294:3117–3123. doi: 10.1001/jama.294.24.3117. [DOI] [PubMed] [Google Scholar]
- 5.Bachmann JM, Willis BL, Ayers CR, Khera A, Berry JD. Association between family history and coronary heart disease death across long-term follow-up in men: The cooper center longitudinal study. Circulation. 2012;125:3092–3098. doi: 10.1161/CIRCULATIONAHA.111.065490. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Morgan TM, Krumholz HM, Lifton RP, Spertus JA. Nonvalidation of reported genetic risk factors for acute coronary syndrome in a large-scale replication study. JAMA. 2007;297:1551–1561. doi: 10.1001/jama.297.14.1551. [DOI] [PubMed] [Google Scholar]
- 7.Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, Barrett JH, Konig IR, Stevens SE, Szymczak S, Tregouet DA, Iles MM, Pahlke F, Pollard H, Lieb W, Cambien F, Fischer M, Ouwehand W, Blankenberg S, Balmforth AJ, Baessler A, Ball SG, Strom TM, Braenne I, Gieger C, Deloukas P, Tobin MD, Ziegler A, Thompson JR, Schunkert H. Genomewide association analysis of coronary artery disease. N Engl J Med. 2007;357:443–453. doi: 10.1056/NEJMoa072366. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, Masson G, Gudbjartsson DF, Magnusson KP, Andersen K, Levey AI, Backman VM, Matthiasdottir S, Jonsdottir T, Palsson S, Einarsdottir H, Gunnarsdottir S, Gylfason A, Vaccarino V, Hooper WC, Reilly MP, Granger CB, Austin H, Rader DJ, Shah SH, Quyyumi AA, Gulcher JR, Thorgeirsson G, Thorsteinsdottir U, Kong A, Stefansson K. A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 2007;316:1491–1493. doi: 10.1126/science.1142842. [DOI] [PubMed] [Google Scholar]
- 9.McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, Boerwinkle E, Hobbs HH, Cohen JC. A common allele on chromosome 9 associated with coronary heart disease. Science. 2007;316:1488–1491. doi: 10.1126/science.1142447. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Schunkert H, Gotz A, Braund P, McGinnis R, Tregouet DA, Mangino M, Linsel-Nitschke P, Cambien F, Hengstenberg C, Stark K, Blankenberg S, Tiret L, Ducimetiere P, Keniry A, Ghori MJ, Schreiber S, El Mokhtari NE, Hall AS, Dixon RJ, Goodall AH, Liptau H, Pollard H, Schwarz DF, Hothorn LA, Wichmann HE, Konig IR, Fischer M, Meisinger C, Ouwehand W, Deloukas P, Thompson JR, Erdmann J, Ziegler A, Samani NJ. Repeated replication and a prospective meta-analysis of the association between chromosome 9p21.3 and coronary artery disease. Circulation. 2008;117:1675–1684. doi: 10.1161/CIRCULATIONAHA.107.730614. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.O'Donnell CJ, Kavousi M, Smith AV, Kardia SL, Feitosa MF, Hwang SJ, Sun YV, Province MA, Aspelund T, Dehghan A, Hoffmann U, Bielak LF, Zhang Q, Eiriksdottir G, van Duijn CM, Fox CS, de Andrade M, Kraja AT, Sigurdsson S, Elias-Smale SE, Murabito JM, Launer LJ, van der Lugt A, Kathiresan S, Krestin GP, Herrington DM, Howard TD, Liu Y, Post W, Mitchell BD, O'Connell JR, Shen H, Shuldiner AR, Altshuler D, Elosua R, Salomaa V, Schwartz SM, Siscovick DS, Voight BF, Bis JC, Glazer NL, Psaty BM, Boerwinkle E, Heiss G, Blankenberg S, Zeller T, Wild PS, Schnabel RB, Schillert A, Ziegler A, Munzel TF, White CC, Rotter JI, Nalls M, Oudkerk M, Johnson AD, Newman AB, Uitterlinden AG, Massaro JM, Cunningham J, Harris TB, Hofman A, Peyser PA, Borecki IB, Cupples LA, Gudnason V, Witteman JC. Genome-wide association study for coronary artery calcification with follow-up in myocardial infarction. Circulation. 2011;124:2855–2864. doi: 10.1161/CIRCULATIONAHA.110.974899. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 12.Cluett C, McDermott MM, Guralnik J, Ferrucci L, Bandinelli S, Miljkovic I, Zmuda JM, Li R, Tranah G, Harris T, Rice N, Henley W, Frayling TM, Murray A, Melzer D. The 9p21 myocardial infarction risk allele increases risk of peripheral artery disease in older people. Circ Cardiovasc Genet. 2009;2:347–353. doi: 10.1161/CIRCGENETICS.108.825935. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Murabito JM, White CC, Kavousi M, Sun YV, Feitosa MF, Nambi V, Lamina C, Schillert A, Coassin S, Bis JC, Broer L, Crawford DC, Franceschini N, Frikke-Schmidt R, Haun M, Holewijn S, Huffman JE, Hwang SJ, Kiechl S, Kollerits B, Montasser ME, Nolte IM, Rudock ME, Senft A, Teumer A, van der Harst P, Vitart V, Waite LL, Wood AR, Wassel CL, Absher DM, Allison MA, Amin N, Arnold A, Asselbergs FW, Aulchenko Y, Bandinelli S, Barbalic M, Boban M, Brown-Gentry K, Couper DJ, Criqui MH, Dehghan A, den Heijer M, Dieplinger B, Ding J, Dorr M, Espinola-Klein C, Felix SB, Ferrucci L, Folsom AR, Fraedrich G, Gibson Q, Goodloe R, Gunjaca G, Haltmayer M, Heiss G, Hofman A, Kieback A, Kiemeney LA, Kolcic I, Kullo IJ, Kritchevsky SB, Lackner KJ, Li X, Lieb W, Lohman K, Meisinger C, Melzer D, Mohler ER, 3rd, Mudnic I, Mueller T, Navis G, Oberhollenzer F, Olin JW, O'Connell J, O'Donnell CJ, Palmas W, Penninx BW, Petersmann A, Polasek O, Psaty BM, Rantner B, Rice K, Rivadeneira F, Rotter JI, Seldenrijk A, Stadler M, Summerer M, Tanaka T, Tybjaerg-Hansen A, Uitterlinden AG, van Gilst WH, Vermeulen SH, Wild SH, Wild PS, Willeit J, Zeller T, Zemunik T, Zgaga L, Assimes TL, Blankenberg S, Boerwinkle E, Campbell H, Cooke JP, de Graaf J, Herrington D, Kardia SL, Mitchell BD, Murray A, Munzel T, Newman AB, Oostra BA, Rudan I, Shuldiner AR, Snieder H, van Duijn CM, Volker U, Wright AF, Wichmann HE, Wilson JF, Witteman JC, Liu Y, Hayward C, Borecki IB, Ziegler A, North KE, Cupples LA, Kronenberg F. Association between chromosome 9p21 variants and the ankle-brachial index identified by a meta-analysis of 21 genome-wide association studies. Circ Cardiovasc Genet. 2012;5:100–112. doi: 10.1161/CIRCGENETICS.111.961292. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Helgadottir A, Thorleifsson G, Magnusson KP, Gretarsdottir S, Steinthorsdottir V, Manolescu A, Jones GT, Rinkel GJ, Blankensteijn JD, Ronkainen A, Jaaskelainen JE, Kyo Y, Lenk GM, Sakalihasan N, Kostulas K, Gottsater A, Flex A, Stefansson H, Hansen T, Andersen G, Weinsheimer S, Borch-Johnsen K, Jorgensen T, Shah SH, Quyyumi AA, Granger CB, Reilly MP, Austin H, Levey AI, Vaccarino V, Palsdottir E, Walters GB, Jonsdottir T, Snorradottir S, Magnusdottir D, Gudmundsson G, Ferrell RE, Sveinbjornsdottir S, Hernesniemi J, Niemela M, Limet R, Andersen K, Sigurdsson G, Benediktsson R, Verhoeven EL, Teijink JA, Grobbee DE, Rader DJ, Collier DA, Pedersen O, Pola R, Hillert J, Lindblad B, Valdimarsson EM, Magnadottir HB, Wijmenga C, Tromp G, Baas AF, Ruigrok YM, van Rij AM, Kuivaniemi H, Powell JT, Matthiasson SE, Gulcher JR, Thorgeirsson G, Kong A, Thorsteinsdottir U, Stefansson K. The same sequence variant on 9p21 associates with myocardial infarction, abdominal aortic aneurysm and intracranial aneurysm. Nat Genet. 2008;40:217–224. doi: 10.1038/ng.72. [DOI] [PubMed] [Google Scholar]
- 15.Preuss M, Konig IR, Thompson JR, Erdmann J, Absher D, Assimes TL, Blankenberg S, Boerwinkle E, Chen L, Cupples LA, Hall AS, Halperin E, Hengstenberg C, Holm H, Laaksonen R, Li M, Marz W, McPherson R, Musunuru K, Nelson CP, Burnett MS, Epstein SE, O'Donnell CJ, Quertermous T, Rader DJ, Roberts R, Schillert A, Stefansson K, Stewart AF, Thorleifsson G, Voight BF, Wells GA, Ziegler A, Kathiresan S, Reilly MP, Samani NJ, Schunkert H. Design of the coronary artery disease genome-wide replication and meta-analysis (cardiogram) study: A genome-wide association meta-analysis involving more than 22 000 cases and 60 000 controls. Circ Cardiovasc Genet. 2010;3:475–483. doi: 10.1161/CIRCGENETICS.109.899443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 16.Coronary Artery Disease (C4D) Genetics Consortium A genome-wide association study in europeans and south asians identifies five new loci for coronary artery disease. Nat Genet. 2011;43:339–344. doi: 10.1038/ng.782. [DOI] [PubMed] [Google Scholar]
- 17.Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C, Absher D, Aherrahrou Z, Allayee H, Altshuler D, Anand SS, Andersen K, Anderson JL, Ardissino D, Ball SG, Balmforth AJ, Barnes TA, Becker DM, Becker LC, Berger K, Bis JC, Boekholdt SM, Boerwinkle E, Braund PS, Brown MJ, Burnett MS, Buysschaert I, Carlquist JF, Chen L, Cichon S, Codd V, Davies RW, Dedoussis G, Dehghan A, Demissie S, Devaney JM, Diemert P, Do R, Doering A, Eifert S, Mokhtari NE, Ellis SG, Elosua R, Engert JC, Epstein SE, de Faire U, Fischer M, Folsom AR, Freyer J, Gigante B, Girelli D, Gretarsdottir S, Gudnason V, Gulcher JR, Halperin E, Hammond N, Hazen SL, Hofman A, Horne BD, Illig T, Iribarren C, Jones GT, Jukema JW, Kaiser MA, Kaplan LM, Kastelein JJ, Khaw KT, Knowles JW, Kolovou G, Kong A, Laaksonen R, Lambrechts D, Leander K, Lettre G, Li M, Lieb W, Loley C, Lotery AJ, Mannucci PM, Maouche S, Martinelli N, McKeown PP, Meisinger C, Meitinger T, Melander O, Merlini PA, Mooser V, Morgan T, Muhleisen TW, Muhlestein JB, Munzel T, Musunuru K, Nahrstaedt J, Nelson CP, Nothen MM, Olivieri O, Patel RS, Patterson CC, Peters A, Peyvandi F, Qu L, Quyyumi AA, Rader DJ, Rallidis LS, Rice C, Rosendaal FR, Rubin D, Salomaa V, Sampietro ML, Sandhu MS, Schadt E, Schafer A, Schillert A, Schreiber S, Schrezenmeir J, Schwartz SM, Siscovick DS, Sivananthan M, Sivapalaratnam S, Smith A, Smith TB, Snoep JD, Soranzo N, Spertus JA, Stark K, Stirrups K, Stoll M, Tang WH, Tennstedt S, Thorgeirsson G, Thorleifsson G, Tomaszewski M, Uitterlinden AG, van Rij AM, Voight BF, Wareham NJ, Wells GA, Wichmann HE, Wild PS, Willenborg C, Witteman JC, Wright BJ, Ye S, Zeller T, Ziegler A, Cambien F, Goodall AH, Cupples LA, Quertermous T, Marz W, Hengstenberg C, Blankenberg S, Ouwehand WH, Hall AS, Deloukas P, Thompson JR, Stefansson K, Roberts R, Thorsteinsdottir U, O'Donnell CJ, McPherson R, Erdmann J, Samani NJ. Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 2011;43:333–338. doi: 10.1038/ng.784. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 18.Erdmann J, Willenborg C, Nahrstaedt J, Preuss M, Konig IR, Baumert J, Linsel-Nitschke P, Gieger C, Tennstedt S, Belcredi P, Aherrahrou Z, Klopp N, Loley C, Stark K, Hengstenberg C, Bruse P, Freyer J, Wagner AK, Medack A, Lieb W, Grosshennig A, Sager HB, Reinhardt A, Schafer A, Schreiber S, El Mokhtari NE, Raaz-Schrauder D, Illig T, Garlichs CD, Ekici AB, Reis A, Schrezenmeir J, Rubin D, Ziegler A, Wichmann HE, Doering A, Meisinger C, Meitinger T, Peters A, Schunkert H. Genome-wide association study identifies a new locus for coronary artery disease on chromosome 10p11.23. Eur Heart J. 2011;32:158–168. doi: 10.1093/eurheartj/ehq405. [DOI] [PubMed] [Google Scholar]
- 19.Lu X, Wang L, Chen S, He L, Yang X, Shi Y, Cheng J, Zhang L, Gu CC, Huang J, Wu T, Ma Y, Li J, Cao J, Chen J, Ge D, Fan Z, Li Y, Zhao L, Li H, Zhou X, Chen L, Liu D, Duan X, Hao Y, Lu F, Liu Z, Yao C, Shen C, Pu X, Yu L, Fang X, Xu L, Mu J, Wu X, Zheng R, Wu N, Zhao Q, Liu X, Wang M, Yu D, Hu D, Ji X, Guo D, Sun D, Wang Q, Yang Y, Liu F, Mao Q, Liang X, Ji J, Chen P, Mo X, Li D, Chai G, Tang Y, Li X, Du Z, Dou C, Yang Z, Meng Q, Wang D, Wang R, Yang J, Schunkert H, Samani NJ, Kathiresan S, Reilly MP, Erdmann J, Peng X, Chen R, Qiang B, Gu D. Genome-wide association study in han chinese identifies four new susceptibility loci for coronary artery disease. Nat Genet. 2012;44:890–894. doi: 10.1038/ng.2337. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, Goldstein BA, Stirrups K, Konig IR, Cazier JB, Johansson A, Hall AS, Lee JY, Willer CJ, Chambers JC, Esko T, Folkersen L, Goel A, Grundberg E, Havulinna AS, Ho WK, Hopewell JC, Eriksson N, Kleber ME, Kristiansson K, Lundmark P, Lyytikainen LP, Rafelt S, Shungin D, Strawbridge RJ, Thorleifsson G, Tikkanen E, Van Zuydam N, Voight BF, Waite LL, Zhang W, Ziegler A, Absher D, Altshuler D, Balmforth AJ, Barroso I, Braund PS, Burgdorf C, Claudi-Boehm S, Cox D, Dimitriou M, Do R, Doney AS, El Mokhtari N, Eriksson P, Fischer K, Fontanillas P, Franco-Cereceda A, Gigante B, Groop L, Gustafsson S, Hager J, Hallmans G, Han BG, Hunt SE, Kang HM, Illig T, Kessler T, Knowles JW, Kolovou G, Kuusisto J, Langenberg C, Langford C, Leander K, Lokki ML, Lundmark A, McCarthy MI, Meisinger C, Melander O, Mihailov E, Maouche S, Morris AD, Muller-Nurasyid M, Nikus K, Peden JF, Rayner NW, Rasheed A, Rosinger S, Rubin D, Rumpf MP, Schafer A, Sivananthan M, Song C, Stewart AF, Tan ST, Thorgeirsson G, van der Schoot CE, Wagner PJ, Wells GA, Wild PS, Yang TP, Amouyel P, Arveiler D, Basart H, Boehnke M, Boerwinkle E, Brambilla P, Cambien F, Cupples AL, de Faire U, Dehghan A, Diemert P, Epstein SE, Evans A, Ferrario MM, Ferrieres J, Gauguier D, Go AS, Goodall AH, Gudnason V, Hazen SL, Holm H, Iribarren C, Jang Y, Kahonen M, Kee F, Kim HS, Klopp N, Koenig W, Kratzer W, Kuulasmaa K, Laakso M, Laaksonen R, Lind L, Ouwehand WH, Parish S, Park JE, Pedersen NL, Peters A, Quertermous T, Rader DJ, Salomaa V, Schadt E, Shah SH, Sinisalo J, Stark K, Stefansson K, Tregouet DA, Virtamo J, Wallentin L, Wareham N, Zimmermann ME, Nieminen MS, Hengstenberg C, Sandhu MS, Pastinen T, Syvanen AC, Hovingh GK, Dedoussis G, Franks PW, Lehtimaki T, Metspalu A, Zalloua PA, Siegbahn A, Schreiber S, Ripatti S, Blankenberg SS, Perola M, Clarke R, Boehm BO, O'Donnell C, Reilly MP, Marz W, Collins R, Kathiresan S, Hamsten A, Kooner JS, Thorsteinsdottir U, Danesh J, Palmer CN, Roberts R, Watkins H, Schunkert H, Samani NJ. Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 2013;45:25–33. doi: 10.1038/ng.2480. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Erdmann J, Grosshennig A, Braund PS, Konig IR, Hengstenberg C, Hall AS, Linsel-Nitschke P, Kathiresan S, Wright B, Tregouet DA, Cambien F, Bruse P, Aherrahrou Z, Wagner AK, Stark K, Schwartz SM, Salomaa V, Elosua R, Melander O, Voight BF, O'Donnell CJ, Peltonen L, Siscovick DS, Altshuler D, Merlini PA, Peyvandi F, Bernardinelli L, Ardissino D, Schillert A, Blankenberg S, Zeller T, Wild P, Schwarz DF, Tiret L, Perret C, Schreiber S, El Mokhtari NE, Schafer A, Marz W, Renner W, Bugert P, Kluter H, Schrezenmeir J, Rubin D, Ball SG, Balmforth AJ, Wichmann HE, Meitinger T, Fischer M, Meisinger C, Baumert J, Peters A, Ouwehand WH, Deloukas P, Thompson JR, Ziegler A, Samani NJ, Schunkert H. New susceptibility locus for coronary artery disease on chromosome 3q22.3. Nat Genet. 2009;41:280–282. doi: 10.1038/ng.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 22.Kathiresan S, Voight BF, Purcell S, Musunuru K, Ardissino D, Mannucci PM, Anand S, Engert JC, Samani NJ, Schunkert H, Erdmann J, Reilly MP, Rader DJ, Morgan T, Spertus JA, Stoll M, Girelli D, McKeown PP, Patterson CC, Siscovick DS, O'Donnell CJ, Elosua R, Peltonen L, Salomaa V, Schwartz SM, Melander O, Altshuler D, Merlini PA, Berzuini C, Bernardinelli L, Peyvandi F, Tubaro M, Celli P, Ferrario M, Fetiveau R, Marziliano N, Casari G, Galli M, Ribichini F, Rossi M, Bernardi F, Zonzin P, Piazza A, Yee J, Friedlander Y, Marrugat J, Lucas G, Subirana I, Sala J, Ramos R, Meigs JB, Williams G, Nathan DM, MacRae CA, Havulinna AS, Berglund G, Hirschhorn JN, Asselta R, Duga S, Spreafico M, Daly MJ, Nemesh J, Korn JM, McCarroll SA, Surti A, Guiducci C, Gianniny L, Mirel D, Parkin M, Burtt N, Gabriel SB, Thompson JR, Braund PS, Wright BJ, Balmforth AJ, Ball SG, Hall AS, Linsel-Nitschke P, Lieb W, Ziegler A, Konig I, Hengstenberg C, Fischer M, Stark K, Grosshennig A, Preuss M, Wichmann HE, Schreiber S, Ouwehand W, Deloukas P, Scholz M, Cambien F, Li M, Chen Z, Wilensky R, Matthai W, Qasim A, Hakonarson HH, Devaney J, Burnett MS, Pichard AD, Kent KM, Satler L, Lindsay JM, Waksman R, Knouff CW, Waterworth DM, Walker MC, Mooser V, Epstein SE, Scheffold T, Berger K, Huge A, Martinelli N, Olivieri O, Corrocher R, McKeown P, Erdmann E, Konig IR, Holm H, Thorleifsson G, Thorsteinsdottir U, Stefansson K, Do R, Xie C, Siscovick D. Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants. Nat Genet. 2009;41:334–341. doi: 10.1038/ng.327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 23.Tregouet DA, Konig IR, Erdmann J, Munteanu A, Braund PS, Hall AS, Grosshennig A, Linsel-Nitschke P, Perret C, DeSuremain M, Meitinger T, Wright BJ, Preuss M, Balmforth AJ, Ball SG, Meisinger C, Germain C, Evans A, Arveiler D, Luc G, Ruidavets JB, Morrison C, van der Harst P, Schreiber S, Neureuther K, Schafer A, Bugert P, El Mokhtari NE, Schrezenmeir J, Stark K, Rubin D, Wichmann HE, Hengstenberg C, Ouwehand W, Ziegler A, Tiret L, Thompson JR, Cambien F, Schunkert H, Samani NJ. Genome-wide haplotype association study identifies the slc22a3-lpal2-lpa gene cluster as a risk locus for coronary artery disease. Nat Genet. 2009;41:283–285. doi: 10.1038/ng.314. [DOI] [PubMed] [Google Scholar]
- 24.Musunuru K, Lettre G, Young T, Farlow DN, Pirruccello JP, Ejebe KG, Keating BJ, Yang Q, Chen MH, Lapchyk N, Crenshaw A, Ziaugra L, Rachupka A, Benjamin EJ, Cupples LA, Fornage M, Fox ER, Heckbert SR, Hirschhorn JN, Newton-Cheh C, Nizzari MM, Paltoo DN, Papanicolaou GJ, Patel SR, Psaty BM, Rader DJ, Redline S, Rich SS, Rotter JI, Taylor HA, Jr., Tracy RP, Vasan RS, Wilson JG, Kathiresan S, Fabsitz RR, Boerwinkle E, Gabriel SB. Candidate gene association resource (care): Design, methods, and proof of concept. Circ Cardiovasc Genet. 2010;3:267–275. doi: 10.1161/CIRCGENETICS.109.882696. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.The IBC 50K CAD Consortium Large-scale gene-centric analysis identifies novel variants for coronary artery disease. PLoS genetics. 2011;7:e1002260. doi: 10.1371/journal.pgen.1002260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Voight BF, Kang HM, Ding J, Palmer CD, Sidore C, Chines PS, Burtt NP, Fuchsberger C, Li Y, Erdmann J, Frayling TM, Heid IM, Jackson AU, Johnson T, Kilpelainen TO, Lindgren CM, Morris AP, Prokopenko I, Randall JC, Saxena R, Soranzo N, Speliotes EK, Teslovich TM, Wheeler E, Maguire J, Parkin M, Potter S, Rayner NW, Robertson N, Stirrups K, Winckler W, Sanna S, Mulas A, Nagaraja R, Cucca F, Barroso I, Deloukas P, Loos RJ, Kathiresan S, Munroe PB, Newton-Cheh C, Pfeufer A, Samani NJ, Schunkert H, Hirschhorn JN, Altshuler D, McCarthy MI, Abecasis GR, Boehnke M. The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits. PLoS genetics. 2012;8:e1002793. doi: 10.1371/journal.pgen.1002793. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Schunkert H, Erdmann J, Samani NJ. Genetics of myocardial infarction: A progress report. Eur Heart J. 2010;31:918–925. doi: 10.1093/eurheartj/ehq038. [DOI] [PubMed] [Google Scholar]
- 28.Ellis KL, Frampton CM, Pilbrow AP, Troughton RW, Doughty RN, Whalley GA, Ellis CJ, Skelton L, Thomson J, Yandle TG, Richards AM, Cameron VA. Genomic risk variants at 1p13.3, 1q41, and 3q22.3 are associated with subsequent cardiovascular outcomes in healthy controls and in established coronary artery disease. Circ Cardiovasc Genet. 2011;4:636–646. doi: 10.1161/CIRCGENETICS.111.960336. [DOI] [PubMed] [Google Scholar]
- 29.Lobato RL, White WD, Mathew JP, Newman MF, Smith PK, McCants CB, Alexander JH, Podgoreanu MV. Thrombomodulin gene variants are associated with increased mortality after coronary artery bypass surgery in replicated analyses. Circulation. 2011;124:S143–148. doi: 10.1161/CIRCULATIONAHA.110.008334. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 30.Westaway SK, Reinier K, Huertas-Vazquez A, Evanado A, Teodorescu C, Navarro J, Sinner MF, Gunson K, Jui J, Spooner P, Kaab S, Chugh SS. Common variants in casq2, gpd1l, and nos1ap are significantly associated with risk of sudden death in patients with coronary artery disease. Circ Cardiovasc Genet. 2011;4:397–402. doi: 10.1161/CIRCGENETICS.111.959916. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 31.French B, Joo J, Geller NL, Kimmel SE, Rosenberg Y, Anderson JL, Gage BF, Johnson JA, Ellenberg JH. Statistical design of personalized medicine interventions: The clarification of optimal anticoagulation through genetics (coag) trial. Trials. 2010;11:108. doi: 10.1186/1745-6215-11-108. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 32.Fischer M, Broeckel U, Holmer S, Baessler A, Hengstenberg C, Mayer B, Erdmann J, Klein G, Riegger G, Jacob HJ, Schunkert H. Distinct heritable patterns of angiographic coronary artery disease in families with myocardial infarction. Circulation. 2005;111:855–862. doi: 10.1161/01.CIR.0000155611.41961.BB. [DOI] [PubMed] [Google Scholar]
- 33.Kitsios GD, Dahabreh IJ, Trikalinos TA, Schmid CH, Huggins GS, Kent DM. Heterogeneity of the phenotypic definition of coronary artery disease and its impact on genetic association studies. Circ Cardiovasc Genet. 2011;4:58–67. doi: 10.1161/CIRCGENETICS.110.957738. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 34.Folkersen L, van't Hooft F, Chernogubova E, Agardh HE, Hansson GK, Hedin U, Liska J, Syvanen AC, Paulsson-Berne G, Franco-Cereceda A, Hamsten A, Gabrielsen A, Eriksson P. Association of genetic risk variants with expression of proximal genes identifies novel susceptibility genes for cardiovascular disease. Circ Cardiovasc Genet. 2010;3:365–373. doi: 10.1161/CIRCGENETICS.110.948935. [DOI] [PubMed] [Google Scholar]
- 35.Musunuru K, Strong A, Frank-Kamenetsky M, Lee NE, Ahfeldt T, Sachs KV, Li X, Li H, Kuperwasser N, Ruda VM, Pirruccello JP, Muchmore B, Prokunina-Olsson L, Hall JL, Schadt EE, Morales CR, Lund-Katz S, Phillips MC, Wong J, Cantley W, Racie T, Ejebe KG, Orho-Melander M, Melander O, Koteliansky V, Fitzgerald K, Krauss RM, Cowan CA, Kathiresan S, Rader DJ. From noncoding variant to phenotype via sort1 at the 1p13 cholesterol locus. Nature. 2010;466:714–719. doi: 10.1038/nature09266. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Kathiresan S, Melander O, Guiducci C, Surti A, Burtt NP, Rieder MJ, Cooper GM, Roos C, Voight BF, Havulinna AS, Wahlstrand B, Hedner T, Corella D, Tai ES, Ordovas JM, Berglund G, Vartiainen E, Jousilahti P, Hedblad B, Taskinen MR, Newton-Cheh C, Salomaa V, Peltonen L, Groop L, Altshuler DM, Orho-Melander M. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans. Nat Genet. 2008;40:189–197. doi: 10.1038/ng.75. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 37.Linsel-Nitschke P, Heeren J, Aherrahrou Z, Bruse P, Gieger C, Illig T, Prokisch H, Heim K, Doering A, Peters A, Meitinger T, Wichmann HE, Hinney A, Reinehr T, Roth C, Ortlepp JR, Soufi M, Sattler AM, Schaefer J, Stark K, Hengstenberg C, Schaefer A, Schreiber S, Kronenberg F, Samani NJ, Schunkert H, Erdmann J. Genetic variation at chromosome 1p13.3 affects sortilin mrna expression, cellular ldl-uptake and serum ldl levels which translates to the risk of coronary artery disease. Atherosclerosis. 2010;208:183–189. doi: 10.1016/j.atherosclerosis.2009.06.034. [DOI] [PubMed] [Google Scholar]
- 38.Linsel-Nitschke P, Samani NJ, Schunkert H. Sorting out cholesterol and coronary artery disease. N Engl J Med. 2010;363:2462–2463. doi: 10.1056/NEJMcibr1010765. [DOI] [PubMed] [Google Scholar]
- 39.Wang TJ. Assessing the role of circulating, genetic, and imaging biomarkers in cardiovascular risk prediction. Circulation. 2011;123:551–565. doi: 10.1161/CIRCULATIONAHA.109.912568. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 40.Thanassoulis G, Peloso GM, Pencina MJ, Hoffmann U, Fox CS, Cupples LA, Levy D, D'Agostino RB, Hwang SJ, O'Donnell CJ. A genetic risk score is associated with incident cardiovascular disease and coronary artery calcium: The framingham heart study. Circ Cardiovasc Genet. 2012;5:113–121. doi: 10.1161/CIRCGENETICS.111.961342. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 41.Patel RS, Sun YV, Hartiala J, Veledar E, Su S, Sher S, Liu YX, Rahman A, Patel R, Rab ST, Vaccarino V, Zafari AM, Samady H, Tang WH, Allayee H, Hazen SL, Quyyumi AA. Association of a genetic risk score with prevalent and incident myocardial infarction in subjects undergoing coronary angiography. Circ Cardiovasc Genet. 2012;5:441–449. doi: 10.1161/CIRCGENETICS.111.960229. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 42.Qi L, Ma J, Qi Q, Hartiala J, Allayee H, Campos H. Genetic risk score and risk of myocardial infarction in hispanics. Circulation. 2011;123:374–380. doi: 10.1161/CIRCULATIONAHA.110.976613. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Franceschini N, Carty C, Buzkova P, Reiner AP, Garrett T, Lin Y, Vockler JS, Hindorff LA, Cole SA, Boerwinkle E, Lin DY, Bookman E, Best LG, Bella JN, Eaton C, Greenland P, Jenny N, North KE, Taverna D, Young AM, Deelman E, Kooperberg C, Psaty B, Heiss G. Association of genetic variants and incident coronary heart disease in multiethnic cohorts: The page study. Circ Cardiovasc Genet. 2011;4:661–672. doi: 10.1161/CIRCGENETICS.111.960096. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 44.Thanassoulis G, Vasan RS. Genetic cardiovascular risk prediction: Will we get there? Circulation. 2010;122:2323–2334. doi: 10.1161/CIRCULATIONAHA.109.909309. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45.Vaarhorst AA, Lu Y, Heijmans BT, Dolle ME, Bohringer S, Putter H, Imholz S, Merry AH, van Greevenbroek MM, Jukema JW, Gorgels AP, van den Brandt PA, Muller M, Schouten LJ, Feskens EJ, Boer JM, Slagboom PE. Literature-based genetic risk scores for coronary heart disease: The cardiovascular registry maastricht (carema) prospective cohort study. Circ Cardiovasc Genet. 2012;5:202–209. doi: 10.1161/CIRCGENETICS.111.960708. [DOI] [PubMed] [Google Scholar]
- 46.Brautbar A, Ballantyne CM, Lawson K, Nambi V, Chambless L, Folsom AR, Willerson JT, Boerwinkle E. Impact of adding a single allele in the 9p21 locus to traditional risk factors on reclassification of coronary heart disease risk and implications for lipid-modifying therapy in the atherosclerosis risk in communities study. Circ Cardiovasc Genet. 2009;2:279–285. doi: 10.1161/CIRCGENETICS.108.817338. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 47.Pletcher MJ, Pignone M. Evaluating the clinical utility of a biomarker: A review of methods for estimating health impact. Circulation. 2011;123:1116–1124. doi: 10.1161/CIRCULATIONAHA.110.943860. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 48.Knowles JW, Assimes TL, Kiernan M, Pavlovic A, Goldstein BA, Yank V, McConnell MV, Absher D, Bustamante C, Ashley EA, Ioannidis JP. Randomized trial of personal genomics for preventive cardiology: Design and challenges. Circ Cardiovasc Genet. 2012;5:368–376. doi: 10.1161/CIRCGENETICS.112.962746. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 49.Wald NJ, Hackshaw AK, Frost CD. When can a risk factor be used as a worthwhile screening test? BMJ. 1999;319:1562–1565. doi: 10.1136/bmj.319.7224.1562. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 50.Dewey FE, Pan S, Wheeler MT, Quake SR, Ashley EA. DNA sequencing: Clinical applications of new DNA sequencing technologies. Circulation. 2012;125:931–944. doi: 10.1161/CIRCULATIONAHA.110.972828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 51.Lusis AJ, Weiss JN. Cardiovascular networks: Systems-based approaches to cardiovascular disease. Circulation. 2010;121:157–170. doi: 10.1161/CIRCULATIONAHA.108.847699. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 52.Jensen MK, Pers TH, Dworzynski P, Girman CJ, Brunak S, Rimm EB. Protein interaction-based genome-wide analysis of incident coronary heart disease. Circ Cardiovasc Genet. 2011;4:549–556. doi: 10.1161/CIRCGENETICS.111.960393. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 53.Handy DE, Castro R, Loscalzo J. Epigenetic modifications: Basic mechanisms and role in cardiovascular disease. Circulation. 2011;123:2145–2156. doi: 10.1161/CIRCULATIONAHA.110.956839. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 54.Tracy RP. ‘Deep phenotyping’: Characterizing populations in the era of genomics and systems biology. Current opinion in lipidology. 2008;19:151–157. doi: 10.1097/MOL.0b013e3282f73893. [DOI] [PubMed] [Google Scholar]
- 55.Teupser D, Baber R, Ceglarek U, Scholz M, Illig T, Gieger C, Holdt LM, Leichtle A, Greiser KH, Huster D, Linsel-Nitschke P, Schafer A, Braund PS, Tiret L, Stark K, Raaz-Schrauder D, Fiedler GM, Wilfert W, Beutner F, Gielen S, Grosshennig A, Konig IR, Lichtner P, Heid IM, Kluttig A, El Mokhtari NE, Rubin D, Ekici AB, Reis A, Garlichs CD, Hall AS, Matthes G, Wittekind C, Hengstenberg C, Cambien F, Schreiber S, Werdan K, Meitinger T, Loeffler M, Samani NJ, Erdmann J, Wichmann HE, Schunkert H, Thiery J. Genetic regulation of serum phytosterol levels and risk of coronary artery disease. Circ Cardiovasc Genet. 2010;3:331–339. doi: 10.1161/CIRCGENETICS.109.907873. [DOI] [PubMed] [Google Scholar]
- 56.Davies RW, Wells GA, Stewart AF, Erdmann J, Shah SH, Ferguson JF, Hall AS, Anand SS, Burnett MS, Epstein SE, Dandona S, Chen L, Nahrstaedt J, Loley C, Konig IR, Kraus WE, Granger CB, Engert JC, Hengstenberg C, Wichmann HE, Schreiber S, Tang WH, Ellis SG, Rader DJ, Hazen SL, Reilly MP, Samani NJ, Schunkert H, Roberts R, McPherson R. A genome-wide association study for coronary artery disease identifies a novel susceptibility locus in the major histocompatibility complex. Circ Cardiovasc Genet. 2012;5:217–225. doi: 10.1161/CIRCGENETICS.111.961243. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 57.Wang F, Xu CQ, He Q, Cai JP, Li XC, Wang D, Xiong X, Liao YH, Zeng QT, Yang YZ, Cheng X, Li C, Yang R, Wang CC, Wu G, Lu QL, Bai Y, Huang YF, Yin D, Yang Q, Wang XJ, Dai DP, Zhang RF, Wan J, Ren JH, Li SS, Zhao YY, Fu FF, Huang Y, Li QX, Shi SW, Lin N, Pan ZW, Li Y, Yu B, Wu YX, Ke YH, Lei J, Wang N, Luo CY, Ji LY, Gao LJ, Li L, Liu H, Huang EW, Cui J, Jia N, Ren X, Li H, Ke T, Zhang XQ, Liu JY, Liu MG, Xia H, Yang B, Shi LS, Xia YL, Tu X, Wang QK. Genome-wide association identifies a susceptibility locus for coronary artery disease in the chinese han population. Nat Genet. 2011;43:345–349. doi: 10.1038/ng.783. [DOI] [PubMed] [Google Scholar]
- 58.Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, Horne BD, Stewart AF, Assimes TL, Wild PS, Allayee H, Nitschke PL, Patel RS, Martinelli N, Girelli D, Quyyumi AA, Anderson JL, Erdmann J, Hall AS, Schunkert H, Quertermous T, Blankenberg S, Hazen SL, Roberts R, Kathiresan S, Samani NJ, Epstein SE, Rader DJ. Identification of adamts7 as a novel locus for coronary atherosclerosis and association of abo with myocardial infarction in the presence of coronary atherosclerosis: Two genome-wide association studies. Lancet. 2011;377:383–392. doi: 10.1016/S0140-6736(10)61996-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 59.Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, Schnabel RB, Lubos E, Keller T, Eleftheriadis MS, Bickel C, Rupprecht HJ, Wilde S, Rossmann H, Diemert P, Cupples LA, Perret C, Erdmann J, Stark K, Kleber ME, Epstein SE, Voight BF, Kuulasmaa K, Li M, Schafer AS, Klopp N, Braund PS, Sager HB, Demissie S, Proust C, Konig IR, Wichmann HE, Reinhard W, Hoffmann MM, Virtamo J, Burnett MS, Siscovick D, Wiklund PG, Qu L, El Mokthari NE, Thompson JR, Peters A, Smith AV, Yon E, Baumert J, Hengstenberg C, Marz W, Amouyel P, Devaney J, Schwartz SM, Saarela O, Mehta NN, Rubin D, Silander K, Hall AS, Ferrieres J, Harris TB, Melander O, Kee F, Hakonarson H, Schrezenmeir J, Gudnason V, Elosua R, Arveiler D, Evans A, Rader DJ, Illig T, Schreiber S, Bis JC, Altshuler D, Kavousi M, Witteman JC, Uitterlinden AG, Hofman A, Folsom AR, Barbalic M, Boerwinkle E, Kathiresan S, Reilly MP, O'Donnell CJ, Samani NJ, Schunkert H, Cambien F, Lackner KJ, Tiret L, Salomaa V, Munzel T, Ziegler A, Blankenberg S. A genome-wide association study identifies lipa as a susceptibility gene for coronary artery disease. Circ Cardiovasc Genet. 2011;4:403–412. doi: 10.1161/CIRCGENETICS.110.958728. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 60.Gudbjartsson DF, Bjornsdottir US, Halapi E, Helgadottir A, Sulem P, Jonsdottir GM, Thorleifsson G, Helgadottir H, Steinthorsdottir V, Stefansson H, Williams C, Hui J, Beilby J, Warrington NM, James A, Palmer LJ, Koppelman GH, Heinzmann A, Krueger M, Boezen HM, Wheatley A, Altmuller J, Shin HD, Uh ST, Cheong HS, Jonsdottir B, Gislason D, Park CS, Rasmussen LM, Porsbjerg C, Hansen JW, Backer V, Werge T, Janson C, Jonsson UB, Ng MC, Chan J, So WY, Ma R, Shah SH, Granger CB, Quyyumi AA, Levey AI, Vaccarino V, Reilly MP, Rader DJ, Williams MJ, van Rij AM, Jones GT, Trabetti E, Malerba G, Pignatti PF, Boner A, Pescollderungg L, Girelli D, Olivieri O, Martinelli N, Ludviksson BR, Ludviksdottir D, Eyjolfsson GI, Arnar D, Thorgeirsson G, Deichmann K, Thompson PJ, Wjst M, Hall IP, Postma DS, Gislason T, Gulcher J, Kong A, Jonsdottir I, Thorsteinsdottir U, Stefansson K. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction. Nat Genet. 2009;41:342–347. doi: 10.1038/ng.323. [DOI] [PubMed] [Google Scholar]