Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Apr;71(4):1379–1383. doi: 10.1073/pnas.71.4.1379

Composition of Mammalian Ribosomal Subunits: A Re-Evaluation

Edwin H McConkey 1
PMCID: PMC388232  PMID: 4598303

Abstract

A method for preparation of highly active mammalian ribosomal subunits is described, which yields 60S subunits containing no more than 33% protein. It is suggested that the composition of these subunits corresponds closely to that of Escherichia coli 50S subunits. Data on the composition of bacterial and mammalian ribosomal subunits recovered from CsCl are given. It is shown that the commonly employed assumptions about the relationship between the buoyant density of a particle in CsCl and its protein content are in error. The composition of ribosomal subunits cannot ordinarily be calculated from the buoyant density in CsCl.

Keywords: RNA, protein, CsCl, aldehyde fixation

Full text

PDF
1381

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baltimore D., Huang A. S. Isopycnic separation of subcellular components from poliovirus-infected and normal HeLa cells. Science. 1968 Nov 1;162(3853):572–574. doi: 10.1126/science.162.3853.572. [DOI] [PubMed] [Google Scholar]
  2. Bickle T. A., Traut R. R. Differences in size and number of 80 S and 70 S ribosomal proteins by dodecyl sulfate gel electrophoresis. J Biol Chem. 1971 Nov 25;246(22):6828–6834. [PubMed] [Google Scholar]
  3. Blobel G., Sabatini D. Dissociation of mammalian polyribosomes into subunits by puromycin. Proc Natl Acad Sci U S A. 1971 Feb;68(2):390–394. doi: 10.1073/pnas.68.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cammarano P., Romeo A., Gentile M., Felsani A., Gualerzi C. Size heterogeneity of the large ribosomal subunits and conservation of the small subunits in eucaryote evolution. Biochim Biophys Acta. 1972 Nov 9;281(4):597–624. doi: 10.1016/0005-2787(72)90159-1. [DOI] [PubMed] [Google Scholar]
  5. Clegg J. C., Arnstein H. R. The controlled dissociation of proteins from rat liver ribosomes by potassium chloride. Eur J Biochem. 1970 Mar 1;13(1):149–157. doi: 10.1111/j.1432-1033.1970.tb00911.x. [DOI] [PubMed] [Google Scholar]
  6. Costello R. C., Baldwin R. L. New banding species, with densities of phage-ghost clusters, produced from lambda phage particles on storage. Biopolymers. 1972;11(10):2171–2177. doi: 10.1002/bip.1972.360111016. [DOI] [PubMed] [Google Scholar]
  7. Costello R. C., Baldwin R. L. The net hydration of phage lambda. Biopolymers. 1972;11(10):2147–2169. doi: 10.1002/bip.1972.360111015. [DOI] [PubMed] [Google Scholar]
  8. Craven G. R., Voynow P., Hardy S. J., Kurland C. G. The ribosomal proteins of Escherichia coli. II. Chemical and physical characterization of the 30S ribosomal proteins. Biochemistry. 1969 Jul;8(7):2906–2915. doi: 10.1021/bi00835a032. [DOI] [PubMed] [Google Scholar]
  9. EAGLE H. Amino acid metabolism in mammalian cell cultures. Science. 1959 Aug 21;130(3373):432–437. doi: 10.1126/science.130.3373.432. [DOI] [PubMed] [Google Scholar]
  10. Falvey A. K., Staehelin T. Structure and function of mammalian ribosomes. I. Isolation and characterization of active liver ribosomal subunits. J Mol Biol. 1970 Oct 14;53(1):1–19. doi: 10.1016/0022-2836(70)90042-2. [DOI] [PubMed] [Google Scholar]
  11. Gold L. M., Schweiger M. Synthesis of phage-specific alpha- and beta-glucosyl transferases directed by T-even DNA in vitro. Proc Natl Acad Sci U S A. 1969 Mar;62(3):892–898. doi: 10.1073/pnas.62.3.892. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Hamilton M. G., Pavlovec A., Petermann M. L. Molecular weight, buoyant density, and composition of active subunits of rat liver ribosomes. Biochemistry. 1971 Aug 31;10(18):3424–3427. doi: 10.1021/bi00794a017. [DOI] [PubMed] [Google Scholar]
  13. Hamilton M. G., Ruth M. E. The dissociation of rat liver ribosomes by ethylenediaminetetraacetic acid; molecular weights, chemical composition, and buoyant densities of the subunits. Biochemistry. 1969 Mar;8(3):851–856. doi: 10.1021/bi00831a013. [DOI] [PubMed] [Google Scholar]
  14. Hirsch C. A., Cox M. A., van Venrooij W. J., Henshaw E. C. The ribosome cycle in mammalian protein synthesis. II. Association of the native smaller ribosomal subunit with protein factors. J Biol Chem. 1973 Jun 25;248(12):4377–4385. [PubMed] [Google Scholar]
  15. Kaltschmidt E., Wittmann H. G. Ribosomal proteins. XII. Number of proteins in small and large ribosomal subunits of Escherichia coli as determined by two-dimensional gel electrophoresis. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1276–1282. doi: 10.1073/pnas.67.3.1276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. King H. W., Gould H. J., Shearman J. J. Molecular weight distribution of proteins in rabbit reticulocyte ribosomal subunits. J Mol Biol. 1971 Oct 14;61(1):143–156. doi: 10.1016/0022-2836(71)90212-9. [DOI] [PubMed] [Google Scholar]
  17. Kurland C. G. The requirements for specific sRNA binding by ribosomes. J Mol Biol. 1966 Jun;18(1):90–108. doi: 10.1016/s0022-2836(66)80079-7. [DOI] [PubMed] [Google Scholar]
  18. Lerman M. I., Spirin A. S., Gavrilova L. P., Golov V. F. Studies on the structure of ribosomes. II. Stepwise dissociation of protein from ribosomes by caesium chloride and the re-assembly of ribosome-like particles. J Mol Biol. 1966 Jan;15(1):268–281. doi: 10.1016/s0022-2836(66)80226-7. [DOI] [PubMed] [Google Scholar]
  19. Loening U. E. Molecular weights of ribosomal RNA in relation to evolution. J Mol Biol. 1968 Dec;38(3):355–365. doi: 10.1016/0022-2836(68)90391-4. [DOI] [PubMed] [Google Scholar]
  20. McConkey E. H., Hopkins J. W. Molecular weights of some HeLa ribosomal RNA's. J Mol Biol. 1969 Feb 14;39(3):545–550. doi: 10.1016/0022-2836(69)90144-2. [DOI] [PubMed] [Google Scholar]
  21. Mora G., Donner D., Thammana P., Lutter L., Kurland C. G., Craven G. R. Purification and characterization of 50S ribosomal proteins of Escherichia coli. Mol Gen Genet. 1971;112(3):229–242. doi: 10.1007/BF00269176. [DOI] [PubMed] [Google Scholar]
  22. Perry R. P., Kelley D. E. Buoyant densities of cytoplasmic ribonucleoprotein particles of mammalian cells: distinctive character of ribosome subunits and the rapidly labeled components. J Mol Biol. 1966 Apr;16(2):255–268. doi: 10.1016/s0022-2836(66)80171-7. [DOI] [PubMed] [Google Scholar]
  23. Rosbash M., Penman S. Membrane-associated protein synthesis of mammalian cells. II. Isopycnic separation of membrane-bound polyribosomes. J Mol Biol. 1971 Jul 28;59(2):243–253. doi: 10.1016/0022-2836(71)90049-0. [DOI] [PubMed] [Google Scholar]
  24. Sherton C. C., Wool I. G. Determination of the number of proteins in liver ribosomes and ribosomal subunits by two-dimensional polyacrylamide gel electrophoresis. J Biol Chem. 1972 Jul 25;247(14):4460–4467. [PubMed] [Google Scholar]
  25. Spirin A. S., Belitsina N. V., Lerman M. I. Use of formaldehyde fixation for studies of ribonucleoprotein particles by caesium chloride density-gradient centrifugation. J Mol Biol. 1965 Dec;14(2):611–615. doi: 10.1016/s0022-2836(65)80213-3. [DOI] [PubMed] [Google Scholar]
  26. Stanley W. M., Jr, Bock R. M. Isolation and physical properties of the ribosomal ribonucleic acid of Escherichia coli. Biochemistry. 1965 Jul;4(7):1302–1311. doi: 10.1021/bi00883a014. [DOI] [PubMed] [Google Scholar]
  27. Voynow P., Kurland C. G. Stoichiometry of the 30S ribosomal proteins of Escherichia coli. Biochemistry. 1971 Feb 2;10(3):517–524. doi: 10.1021/bi00779a026. [DOI] [PubMed] [Google Scholar]
  28. Warner J. R. The assembly of ribosomes in yeast. J Biol Chem. 1971 Jan 25;246(2):447–454. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES