Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2013 Oct 23;69(Pt 11):o1680–o1681. doi: 10.1107/S160053681302802X

3-(1,3-Di­phenyl­propan-2-yl)-4-methyl-6-phenyl­isoxazolo[3,4-d]pyridazin-7(6H)-one

Charles F Campana a, Joseph Mirzaei b, Chris Koerner b, Christina Gates b, Nicholas R Natale b,*
PMCID: PMC3884336  PMID: 24454112

Abstract

In the title compound, C27H23N3O2, the geminal benzyl groups branching out from the methine adjacent to the isoxazole group are both syn-oriented to the methyl group of the pyridazinone moiety, as reflected by C—C distances of 3.812 (2) and 4.369 (2) Å between the methyl carbon and the nearest ring carbon of each benzyl group. This kind of conformation is retained in CDCl3 solution, as evidenced by distinct phenyl-shielding effects on the 1H NMR signals of the methyl H atoms. The isoxazolo[3,4-d]pyridazin ring system is virtually planar (r.m.s. deviation from planarity = 0.031 Å), but the N-bonded phenyl group is inclined to the former by an ring–ring angle of 55.05 (3)°. In the crystal, the T-shaped mol­ecules are arranged in an inter­locked fashion, forming rod-like assemblies along [10-1]. The mol­ecules are held together by unremarkable weak C—H⋯N, C—H⋯O and C—H⋯π inter­actions (C—O,N,C > 3.4 A), while significant π–π-stacking inter­actions are absent.

Related literature  

For chemistry of isoxazolo[3,4-d]pyridazinone preparation, see: Renzi & Dal Piaz (1965). For deprotonation with sodium alkoxides, see: Dal Piaz et al. (1975); Chimichi et al. (1986). For the rearrangement of the isoxazolo[3,4-d]pyridazinone ring system to pyrazole, see: Dal Piaz et al. (1985). For isoxazole lateral metalation, see: Natale & Niou (1984); Natale et al. (1985); Niou & Natale (1986); Schlicksupp & Natale (1987). For recent applications of lateral metalation and electrophilic quenching of isoxazoles to targets of biological inter­est, see: Nakamura et al. (2010); Hulubei et al. (2012). For a review of the lateral metalation and electrophilic quenching of isoxazoles, see: Natale & Mirzaei (1993).graphic file with name e-69-o1680-scheme1.jpg

Experimental  

Crystal data  

  • C27H23N3O2

  • M r = 421.48

  • Triclinic, Inline graphic

  • a = 7.5163 (4) Å

  • b = 9.6774 (5) Å

  • c = 15.9053 (8) Å

  • α = 86.798 (1)°

  • β = 83.512 (1)°

  • γ = 69.385 (1)°

  • V = 1075.75 (10) Å3

  • Z = 2

  • Cu Kα radiation

  • μ = 0.66 mm−1

  • T = 100 K

  • 0.40 × 0.22 × 0.19 mm

Data collection  

  • Bruker D8 Venture PHOTON 100 CMOS diffractometer

  • Absorption correction: numerical (SADABS; Bruker, 2012) T min = 0.80, T max = 0.89

  • 12012 measured reflections

  • 3714 independent reflections

  • 3597 reflections with I > 2σ(I)

  • R int = 0.017

Refinement  

  • R[F 2 > 2σ(F 2)] = 0.032

  • wR(F 2) = 0.078

  • S = 1.03

  • 3714 reflections

  • 313 parameters

  • 86 restraints

  • Only H-atom displacement parameters refined

  • Δρmax = 0.22 e Å−3

  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681302802X/qk2060sup1.cif

e-69-o1680-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302802X/qk2060Isup2.hkl

e-69-o1680-Isup2.hkl (182.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302802X/qk2060Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C26—H26⋯O1i 0.95 2.61 3.4159 (13) 143
C24—H24⋯N1ii 0.95 2.73 3.5407 (15) 143
C11—H11⋯C18iii 0.95 2.78 3.6182 (15) 148

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Acknowledgments

NRN, JM, CG and CK thank the National Institutes of Health for grants NINDS P20RR015583 Center for Structural and Functional Neuroscience (CSFN) and P20 RR017670 Center for Environmental Health Sciences (CEHS), We also thank NINDS P30 (NN and JM), and the University of Montana Grant Program (NN).

supplementary crystallographic information

1. Comment

The title compound (Fig. 1) was prepared by lateral metalation with lithium hexamethyldisilazide and electrophilic quenching with benzyl bromide (Natale & Mirzaei, 1993), under thermodynamic conditions (Niou & Natale, 1986; Schlicksupp & Natale, 1987), during which a facile second deprotonation and quenching leads to double incorporation (Natale et al., 1985, Natale & Niou, 1984). Mono-alkylation and recovered starting material account for sufficient material balance to rule out substantial rearrangement under these conditions. The present study unambiguously establishes the regiochemistry of double alkylation. Previous reports on analogous deprotonation with sodium alkoxides (Dal Piaz, et al., 1975; Chimichi, et al., 1986), reported rearrangement to pyrazoles with longer reaction times (Dal Piaz et al., 1985). The lateral metalation and electrophilic quenching of isoxazoles continues to lead to candidates with promising biological activity (Nakamura, et al., 2010; Hulubei et al., 2012) and is the subject of active investigation, to be reported in due course. The conformation observed in the solid state (Fig. 1) would be expected to result in magnetic anisotropy if maintained in solution, and this is indeed observed, as the 1H NMR resonance of the C(4) methyl is observed at δ 2.55 in the starting material, δ 2.21 in the monoalkylated product, and δ 1.86 in the title compound. Further chemistry and pharmacology studies based upon this reaction are underway and will be reported in due course.

2. Experimental

Starting material, 3-methyl-4-methyl-6-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one (Fig. 2) was prepared according to Renzi and Dal Piaz (1965). To starting material (88 mg, 0.36 mmol) was added freshly distilled tetrahydrofuran (THF, 25 ml), under an argon atmosphere. The temperature was lowered to 195 K, and a solution of lithium hexamethyldisilazide (1 ml, 1.0M in THF, Aldrich, 28% excess) was added dropwise over five minutes. After stirring for 1 h, benzyl bromide was added via syringe (0.1 ml, 0.84 mmol, 14% excess). The reaction was allowed to come to room temperature with stirring overnight, after which time the solvent was removed in vacuo by rotary evaporator, and the residue chromatographed on an 80 x 35 cm silica gel column. Gradient chromatogrpahy was performed beginning with chloroform-hexane (1:1), and the gradient slowly increased in polarity to ethyl acetate (EtOAc)-hexane-chloroform (1:2:1). The product 3-(1,3-diphenylpropan-2-yl)-4-methyl-6-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one was obtained from the column fraction with Rf 0.6 (SiO2, EtOAc-hexane-chloroform 2:1:1) as a solid (57.1 mg, 38% yield), and was recrystallized by slow evaporation from EtOAc/hexanes to which a small amount of heptane had been added. The resulting crystals were used in the single crystal X-ray study. A clear light yellow prism-like specimen was selected for the X-ray data collection with a Bruker D8 Venture PHOTON 100 CMOS system equipped with a Cu Kα INCOATEC micro-focus source (λ = 1.54178 Å).

3. Refinement

A DELU restraint (Sheldrick, 2008) was used for the Uij of all non-H atoms. Hydrogen atoms were positioned geometrically and refined as riding atoms, with C—H = 0.96–0.99 Å and Uiso(H) = 1.5Ueq(C) for methyl H atoms, and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.

Fig. 1.

Molecular structure of the title compound, with H atoms represented by small spheres of arbitrary radius and displacement ellipsoids at the 50% probability level.

Fig. 2.

Fig. 2.

Benzylation of 3-methyl-4-methyl-6-phenylisoxazolo[3,4-d]pyridazin-7(6H)-one as precursor to give the title compound.

Fig. 3.

Fig. 3.

The unit cell of the title compound.

Crystal data

C27H23N3O2 Z = 2
Mr = 421.48 F(000) = 444
Triclinic, P1 calculated from global refinement
Hall symbol: -P 1 Dx = 1.301 Mg m3
a = 7.5163 (4) Å Cu Kα radiation, λ = 1.54178 Å
b = 9.6774 (5) Å Cell parameters from 9923 reflections
c = 15.9053 (8) Å θ = 2.8–68.4°
α = 86.798 (1)° µ = 0.66 mm1
β = 83.512 (1)° T = 100 K
γ = 69.385 (1)° Prism, clear light yellow
V = 1075.75 (10) Å3 0.40 × 0.22 × 0.19 mm

Data collection

Bruker D8 Venture PHOTON 100 CMOS diffractometer 3714 independent reflections
Radiation source: Cu Kα 3597 reflections with I > 2σ(I)
Mirrors monochromator Rint = 0.017
Detector resolution: 10.4167 pixels mm-1 θmax = 66.6°, θmin = 2.8°
ω and phi scans h = −8→3
Absorption correction: numerical (SADABS; Bruker, 2012) k = −11→11
Tmin = 0.80, Tmax = 0.89 l = −18→18
12012 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078 Only H-atom displacement parameters refined
S = 1.03 w = 1/[σ2(Fo2) + (0.0352P)2 + 0.337P] where P = (Fo2 + 2Fc2)/3
3714 reflections (Δ/σ)max < 0.001
313 parameters Δρmax = 0.22 e Å3
86 restraints Δρmin = −0.14 e Å3
0 constraints

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.00502 (11) 0.47448 (8) 0.64153 (5) 0.02756 (18)
N1 0.15001 (13) 0.33590 (10) 0.65000 (6) 0.0270 (2)
C1 0.25346 (14) 0.36020 (11) 0.70485 (6) 0.0222 (2)
C2 0.42780 (15) 0.24940 (11) 0.73381 (6) 0.0226 (2)
O2 0.49243 (11) 0.11970 (8) 0.71482 (5) 0.02828 (18)
N2 0.51293 (12) 0.31237 (9) 0.78613 (5) 0.02217 (19)
N3 0.44085 (12) 0.45480 (9) 0.81882 (5) 0.0235 (2)
C3 0.28457 (14) 0.54911 (11) 0.79389 (6) 0.0224 (2)
C4 0.18507 (14) 0.50724 (11) 0.73305 (6) 0.0217 (2)
C5 0.02762 (15) 0.57547 (12) 0.69057 (6) 0.0232 (2)
C6 0.69832 (14) 0.22965 (11) 0.81342 (7) 0.0224 (2)
C7 0.85159 (15) 0.16976 (11) 0.75336 (7) 0.0260 (2)
H7 0.8334 0.1771 0.6949 0.030 (3)*
C8 1.03243 (15) 0.09880 (12) 0.77969 (7) 0.0278 (2)
H8 1.1385 0.0572 0.739 0.034 (3)*
C9 1.05866 (16) 0.08840 (12) 0.86484 (7) 0.0284 (2)
H9 1.1823 0.0391 0.8826 0.033 (3)*
C10 0.90441 (16) 0.15001 (12) 0.92425 (7) 0.0273 (2)
H10 0.9229 0.1434 0.9827 0.032 (3)*
C11 0.72289 (15) 0.22140 (11) 0.89891 (7) 0.0248 (2)
H11 0.6171 0.264 0.9396 0.025 (3)*
C12 0.21729 (16) 0.69938 (12) 0.83066 (8) 0.0295 (2)
H12A 0.3036 0.7028 0.8717 0.039 (4)*
H12B 0.0879 0.7216 0.8591 0.039 (4)*
H12C 0.2161 0.7725 0.7854 0.043 (4)*
C13 −0.11611 (15) 0.72853 (12) 0.68583 (7) 0.0255 (2)
H13 −0.0688 0.7945 0.7162 0.019 (3)*
C14 −0.31156 (15) 0.73629 (12) 0.73267 (7) 0.0279 (2)
H14A −0.4109 0.831 0.7186 0.032 (3)*
H14B −0.3481 0.6549 0.7141 0.029 (3)*
C15 −0.29925 (14) 0.72404 (12) 0.82684 (7) 0.0256 (2)
C16 −0.24282 (15) 0.58718 (12) 0.86891 (7) 0.0280 (2)
H16 −0.222 0.5 0.8387 0.028 (3)*
C17 −0.21682 (16) 0.57717 (13) 0.95421 (7) 0.0306 (3)
H17 −0.1802 0.4835 0.9822 0.038 (4)*
C18 −0.24399 (15) 0.70303 (13) 0.99886 (7) 0.0302 (3)
H18 −0.2237 0.6958 1.0571 0.034 (3)*
C19 −0.30114 (15) 0.83994 (13) 0.95784 (7) 0.0296 (2)
H19 −0.3209 0.9268 0.9882 0.032 (3)*
C20 −0.32932 (15) 0.85002 (12) 0.87290 (7) 0.0278 (2)
H20 −0.3697 0.9442 0.8456 0.034 (3)*
C21 −0.12730 (16) 0.78383 (13) 0.59301 (7) 0.0302 (3)
H21A −0.1683 0.7183 0.5602 0.029 (3)*
H21B −0.2235 0.8846 0.5907 0.038 (4)*
C22 0.13242 (17) 0.89367 (13) 0.57720 (7) 0.0308 (3)
H22 0.0532 0.9691 0.6146 0.037 (4)*
C23 0.31273 (18) 0.89326 (13) 0.54685 (7) 0.0336 (3)
H23 0.357 0.9668 0.5641 0.039 (4)*
C24 0.42832 (17) 0.78538 (14) 0.49126 (7) 0.0343 (3)
H24 0.5519 0.7848 0.47 0.039 (4)*
C25 0.36233 (18) 0.67858 (14) 0.46702 (7) 0.0355 (3)
H25 0.4407 0.6048 0.4285 0.046 (4)*
C26 0.18236 (18) 0.67824 (13) 0.49847 (7) 0.0322 (3)
H26 0.1394 0.6036 0.4817 0.036 (3)*
C27 0.06465 (16) 0.78583 (12) 0.55409 (7) 0.0271 (2)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0275 (4) 0.0247 (4) 0.0302 (4) −0.0066 (3) −0.0104 (3) 0.0004 (3)
N1 0.0273 (5) 0.0231 (5) 0.0295 (5) −0.0062 (4) −0.0071 (4) 0.0001 (4)
C1 0.0238 (5) 0.0218 (5) 0.0219 (5) −0.0093 (4) −0.0024 (4) 0.0019 (4)
C2 0.0245 (5) 0.0203 (5) 0.0230 (5) −0.0085 (4) −0.0019 (4) 0.0013 (4)
O2 0.0309 (4) 0.0197 (4) 0.0334 (4) −0.0068 (3) −0.0064 (3) −0.0008 (3)
N2 0.0219 (4) 0.0175 (4) 0.0257 (4) −0.0045 (3) −0.0044 (3) 0.0001 (3)
N3 0.0227 (4) 0.0194 (4) 0.0273 (5) −0.0057 (3) −0.0033 (3) −0.0016 (3)
C3 0.0203 (5) 0.0218 (5) 0.0249 (5) −0.0074 (4) −0.0030 (4) 0.0017 (4)
C4 0.0218 (5) 0.0200 (5) 0.0229 (5) −0.0075 (4) −0.0013 (4) 0.0021 (4)
C5 0.0232 (5) 0.0241 (5) 0.0236 (5) −0.0094 (4) −0.0042 (4) 0.0017 (4)
C6 0.0216 (5) 0.0163 (5) 0.0296 (5) −0.0063 (4) −0.0059 (4) 0.0031 (4)
C7 0.0282 (6) 0.0219 (5) 0.0261 (5) −0.0065 (4) −0.0039 (4) 0.0013 (4)
C8 0.0244 (5) 0.0222 (5) 0.0336 (6) −0.0045 (4) −0.0011 (4) −0.0012 (4)
C9 0.0241 (5) 0.0215 (5) 0.0383 (6) −0.0049 (4) −0.0097 (4) 0.0030 (4)
C10 0.0300 (6) 0.0238 (5) 0.0283 (6) −0.0083 (4) −0.0089 (4) 0.0037 (4)
C11 0.0249 (5) 0.0219 (5) 0.0273 (5) −0.0081 (4) −0.0027 (4) 0.0013 (4)
C12 0.0243 (5) 0.0244 (6) 0.0389 (6) −0.0051 (4) −0.0086 (5) −0.0052 (5)
C13 0.0237 (5) 0.0230 (5) 0.0295 (6) −0.0065 (4) −0.0082 (4) 0.0033 (4)
C14 0.0224 (5) 0.0244 (6) 0.0363 (6) −0.0064 (4) −0.0080 (4) 0.0026 (4)
C15 0.0171 (5) 0.0251 (5) 0.0349 (6) −0.0078 (4) −0.0035 (4) 0.0023 (4)
C16 0.0235 (5) 0.0232 (5) 0.0387 (6) −0.0097 (4) −0.0046 (4) 0.0010 (5)
C17 0.0270 (6) 0.0267 (6) 0.0391 (6) −0.0116 (4) −0.0044 (5) 0.0081 (5)
C18 0.0246 (5) 0.0354 (6) 0.0303 (6) −0.0111 (5) −0.0002 (4) 0.0022 (5)
C19 0.0230 (5) 0.0274 (6) 0.0365 (6) −0.0072 (4) 0.0013 (4) −0.0040 (5)
C20 0.0210 (5) 0.0214 (5) 0.0384 (6) −0.0050 (4) −0.0018 (4) 0.0033 (4)
C21 0.0293 (6) 0.0295 (6) 0.0318 (6) −0.0084 (5) −0.0124 (5) 0.0076 (5)
C22 0.0362 (6) 0.0266 (6) 0.0277 (6) −0.0081 (5) −0.0059 (5) 0.0013 (4)
C23 0.0416 (7) 0.0345 (6) 0.0302 (6) −0.0188 (5) −0.0100 (5) 0.0050 (5)
C24 0.0332 (6) 0.0421 (7) 0.0279 (6) −0.0138 (5) −0.0056 (5) 0.0075 (5)
C25 0.0425 (7) 0.0348 (7) 0.0256 (6) −0.0099 (5) −0.0003 (5) −0.0002 (5)
C26 0.0437 (7) 0.0307 (6) 0.0251 (5) −0.0153 (5) −0.0088 (5) 0.0018 (4)
C27 0.0304 (6) 0.0271 (6) 0.0235 (5) −0.0081 (4) −0.0116 (4) 0.0078 (4)

Geometric parameters (Å, º)

O1—C5 1.3506 (13) C13—H13 1.0
O1—N1 1.4100 (11) C14—C15 1.5067 (16)
N1—C1 1.3138 (14) C14—H14A 0.99
C1—C4 1.4122 (14) C14—H14B 0.99
C1—C2 1.4734 (14) C15—C20 1.3937 (16)
C2—O2 1.2176 (13) C15—C16 1.3968 (15)
C2—N2 1.3873 (13) C16—C17 1.3857 (17)
N2—N3 1.3979 (12) C16—H16 0.95
N2—C6 1.4434 (13) C17—C18 1.3851 (17)
N3—C3 1.2961 (13) C17—H17 0.95
C3—C4 1.4425 (15) C18—C19 1.3898 (16)
C3—C12 1.4909 (15) C18—H18 0.95
C4—C5 1.3688 (15) C19—C20 1.3839 (17)
C5—C13 1.4986 (14) C19—H19 0.95
C6—C7 1.3851 (15) C20—H20 0.95
C6—C11 1.3869 (15) C21—C27 1.5105 (16)
C7—C8 1.3906 (16) C21—H21A 0.99
C7—H7 0.95 C21—H21B 0.99
C8—C9 1.3835 (16) C22—C23 1.3850 (17)
C8—H8 0.95 C22—C27 1.3940 (16)
C9—C10 1.3861 (16) C22—H22 0.95
C9—H9 0.95 C23—C24 1.3847 (18)
C10—C11 1.3895 (15) C23—H23 0.95
C10—H10 0.95 C24—C25 1.3825 (18)
C11—H11 0.95 C24—H24 0.95
C12—H12A 0.98 C25—C26 1.3893 (18)
C12—H12B 0.98 C25—H25 0.95
C12—H12C 0.98 C26—C27 1.3881 (16)
C13—C21 1.5431 (15) C26—H26 0.95
C13—C14 1.5492 (15)
C5—O1—N1 110.86 (8) C14—C13—H13 107.2
C1—N1—O1 103.37 (8) C15—C14—C13 109.92 (8)
N1—C1—C4 113.41 (9) C15—C14—H14A 109.7
N1—C1—C2 124.88 (9) C13—C14—H14A 109.7
C4—C1—C2 121.68 (9) C15—C14—H14B 109.7
O2—C2—N2 123.36 (9) C13—C14—H14B 109.7
O2—C2—C1 125.71 (10) H14A—C14—H14B 108.2
N2—C2—C1 110.93 (9) C20—C15—C16 118.33 (10)
C2—N2—N3 127.80 (8) C20—C15—C14 119.92 (10)
C2—N2—C6 120.74 (8) C16—C15—C14 121.55 (10)
N3—N2—C6 111.46 (8) C17—C16—C15 120.73 (10)
C3—N3—N2 119.61 (9) C17—C16—H16 119.6
N3—C3—C4 120.23 (9) C15—C16—H16 119.6
N3—C3—C12 116.70 (9) C18—C17—C16 120.33 (10)
C4—C3—C12 123.07 (9) C18—C17—H17 119.8
C5—C4—C1 104.21 (9) C16—C17—H17 119.8
C5—C4—C3 136.51 (10) C17—C18—C19 119.48 (11)
C1—C4—C3 119.28 (9) C17—C18—H18 120.3
O1—C5—C4 108.15 (9) C19—C18—H18 120.3
O1—C5—C13 115.96 (9) C20—C19—C18 120.14 (11)
C4—C5—C13 135.89 (10) C20—C19—H19 119.9
C7—C6—C11 121.11 (10) C18—C19—H19 119.9
C7—C6—N2 119.36 (9) C19—C20—C15 120.97 (10)
C11—C6—N2 119.33 (9) C19—C20—H20 119.5
C6—C7—C8 119.17 (10) C15—C20—H20 119.5
C6—C7—H7 120.4 C27—C21—C13 110.58 (9)
C8—C7—H7 120.4 C27—C21—H21A 109.5
C9—C8—C7 120.33 (10) C13—C21—H21A 109.5
C9—C8—H8 119.8 C27—C21—H21B 109.5
C7—C8—H8 119.8 C13—C21—H21B 109.5
C8—C9—C10 119.94 (10) H21A—C21—H21B 108.1
C8—C9—H9 120.0 C23—C22—C27 121.42 (11)
C10—C9—H9 120.0 C23—C22—H22 119.3
C9—C10—C11 120.40 (10) C27—C22—H22 119.3
C9—C10—H10 119.8 C24—C23—C22 119.85 (11)
C11—C10—H10 119.8 C24—C23—H23 120.1
C6—C11—C10 119.05 (10) C22—C23—H23 120.1
C6—C11—H11 120.5 C25—C24—C23 119.42 (11)
C10—C11—H11 120.5 C25—C24—H24 120.3
C3—C12—H12A 109.5 C23—C24—H24 120.3
C3—C12—H12B 109.5 C24—C25—C26 120.56 (11)
H12A—C12—H12B 109.5 C24—C25—H25 119.7
C3—C12—H12C 109.5 C26—C25—H25 119.7
H12A—C12—H12C 109.5 C27—C26—C25 120.70 (11)
H12B—C12—H12C 109.5 C27—C26—H26 119.6
C5—C13—C21 110.34 (9) C25—C26—H26 119.6
C5—C13—C14 110.96 (9) C26—C27—C22 118.05 (11)
C21—C13—C14 113.70 (9) C26—C27—C21 121.96 (10)
C5—C13—H13 107.2 C22—C27—C21 119.91 (10)
C21—C13—H13 107.2
C5—O1—N1—C1 0.42 (11) C6—C7—C8—C9 −0.07 (16)
O1—N1—C1—C4 −0.08 (11) C7—C8—C9—C10 −0.54 (16)
O1—N1—C1—C2 −178.31 (9) C8—C9—C10—C11 0.47 (16)
N1—C1—C2—O2 −4.53 (17) C7—C6—C11—C10 −0.83 (16)
C4—C1—C2—O2 177.38 (10) N2—C6—C11—C10 −175.73 (9)
N1—C1—C2—N2 174.91 (10) C9—C10—C11—C6 0.20 (16)
C4—C1—C2—N2 −3.18 (13) O1—C5—C13—C21 −53.31 (12)
O2—C2—N2—N3 −172.66 (9) C4—C5—C13—C21 125.98 (13)
C1—C2—N2—N3 7.88 (14) O1—C5—C13—C14 73.63 (11)
O2—C2—N2—C6 7.42 (15) C4—C5—C13—C14 −107.07 (14)
C1—C2—N2—C6 −172.03 (8) C5—C13—C14—C15 71.49 (11)
C2—N2—N3—C3 −6.84 (15) C21—C13—C14—C15 −163.44 (9)
C6—N2—N3—C3 173.09 (9) C13—C14—C15—C20 86.05 (12)
N2—N3—C3—C4 0.28 (14) C13—C14—C15—C16 −88.63 (12)
N2—N3—C3—C12 −179.32 (9) C20—C15—C16—C17 −0.22 (15)
N1—C1—C4—C5 −0.26 (12) C14—C15—C16—C17 174.54 (10)
C2—C1—C4—C5 178.03 (9) C15—C16—C17—C18 −0.90 (16)
N1—C1—C4—C3 179.63 (9) C16—C17—C18—C19 1.23 (16)
C2—C1—C4—C3 −2.08 (15) C17—C18—C19—C20 −0.44 (16)
N3—C3—C4—C5 −176.42 (11) C18—C19—C20—C15 −0.69 (16)
C12—C3—C4—C5 3.15 (19) C16—C15—C20—C19 1.01 (15)
N3—C3—C4—C1 3.73 (15) C14—C15—C20—C19 −173.84 (10)
C12—C3—C4—C1 −176.70 (10) C5—C13—C21—C27 −59.69 (12)
N1—O1—C5—C4 −0.60 (11) C14—C13—C21—C27 174.90 (9)
N1—O1—C5—C13 178.88 (8) C27—C22—C23—C24 1.06 (17)
C1—C4—C5—O1 0.51 (11) C22—C23—C24—C25 −0.34 (17)
C3—C4—C5—O1 −179.35 (11) C23—C24—C25—C26 −0.50 (17)
C1—C4—C5—C13 −178.82 (11) C24—C25—C26—C27 0.65 (17)
C3—C4—C5—C13 1.3 (2) C25—C26—C27—C22 0.05 (16)
C2—N2—C6—C7 56.43 (13) C25—C26—C27—C21 −176.67 (10)
N3—N2—C6—C7 −123.50 (10) C23—C22—C27—C26 −0.90 (16)
C2—N2—C6—C11 −128.58 (10) C23—C22—C27—C21 175.88 (10)
N3—N2—C6—C11 51.49 (12) C13—C21—C27—C26 103.38 (12)
C11—C6—C7—C8 0.76 (16) C13—C21—C27—C22 −73.27 (12)
N2—C6—C7—C8 175.67 (9)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C26—H26···O1i 0.95 2.61 3.4159 (13) 143
C24—H24···N1ii 0.95 2.73 3.5407 (15) 143
C11—H11···C18iii 0.95 2.78 3.6182 (15) 148

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z+1; (iii) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: QK2060).

References

  1. Bruker (2012). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Chimichi, S., Ciciani, G., Dal Piaz, V., De Sio, F., Sarti-Fantoni, P. & Torroba, T. (1986). Heterocycles, 24, 3467–3471.
  3. Dal Piaz, V., Ciciani, G. & Chimichi, S. (1985). Heterocycles, 23, 365–369.
  4. Dal Piaz, V., Pinzauti, S. & Lacrimini, P. (1975). J. Heterocycl. Chem. 13, 409–410.
  5. Hulubei, V., Meikrantz, S. B., Quincy, D. A., Houle, T., McKenna, J. I., Rogers, M. E., Steiger, S. A. & Natale, N. R. (2012). Bioorg. Med. Chem. 20, 6613–6620. [DOI] [PMC free article] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Nakamura, M., Kurihara, H., Suzuki, G., Mitsuya, M., Ohkubo, M. & Ohta, H. (2010). Bioorg. Med. Chem. Lett. 20, 726–729. [DOI] [PubMed]
  8. Natale, N. R., McKenna, J. I., Niou, C.-S., Borth, M. & Hope, H. (1985). J. Org. Chem. 50, 5660–5666.
  9. Natale, N. R. & Mirzaei, Y. R. (1993). Org. Prep. Proc. Int. 25, 515–556.
  10. Natale, N. R. & Niou, C.-S. (1984). Tetrahedron Lett. 25, 3943–3946.
  11. Niou, C.-S. & Natale, N. R. (1986). Heterocycles, 24, 401–412.
  12. Renzi, G. & Dal Piaz, V. (1965). Gazz. Chim. Ital. 95, 1478–1491.
  13. Schlicksupp, L. & Natale, N. R. (1987). J. Heterocycl. Chem. 24, 1345–1348.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681302802X/qk2060sup1.cif

e-69-o1680-sup1.cif (29.9KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681302802X/qk2060Isup2.hkl

e-69-o1680-Isup2.hkl (182.1KB, hkl)

Supplementary material file. DOI: 10.1107/S160053681302802X/qk2060Isup3.cml

Additional supplementary materials: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES