Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jun;71(6):2449–2452. doi: 10.1073/pnas.71.6.2449

Effects of an Antibody to a Highly Purified Na+, K+-ATPase from Canine Renal Medulla: Separation of the “Holoenzyme Antibody” into Catalytic and Cardiac Glycoside Receptor-Specific Components

John L McCans 1,2,3, Lois K Lane 1,2,3, George E Lindenmayer 1,2,3, Vincent P Butler Jr 1,2,3, Arnold Schwartz 1,2,3
PMCID: PMC388475  PMID: 4276366

Abstract

An antiserum was prepared against a highly purified Na+, K+-adenosine triphosphatase (ATP phosphohydrolase, EC 3.6.1.3). Purification and fractionation yielded two globulin components, one of which appears specific for a digitalis glycoside receptor site or binding conformation and the other for a catalytic site or conformation.

Keywords: antibody fractionation, globulin components, digitalis receptor antibody, conformation-specific antibodies

Full text

PDF
2450

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Askari A., Rao S. N. Na + -ATPase complex: effects of anticomplex antibody on the partial reactions catalyzed by the complex. Biochem Biophys Res Commun. 1972 Dec 4;49(5):1323–1328. doi: 10.1016/0006-291x(72)90611-0. [DOI] [PubMed] [Google Scholar]
  2. Averdunk R., Günther T., Dorn F., Zimmermann U. Uber die Wirkung von Antikörpern auf die ATPase-Aktivität und den aktiven Na-K-Transport von E. coli und Menschen-Erythrozyten. Z Naturforsch B. 1969 Jun;24(6):693–698. [PubMed] [Google Scholar]
  3. Celada F., Strom R. Antibody-induced conformational changes in proteins. Q Rev Biophys. 1972 Aug;5(3):395–425. doi: 10.1017/s0033583500000998. [DOI] [PubMed] [Google Scholar]
  4. Jorgensen P. L., Hansen O., Glynn I. M., Cavieres J. D. Antibodies to pig kidney (Na + +K + )-ATPase inhibit the Na + pump in human red cells provided they have access to the inner surface of the cell membrane. Biochim Biophys Acta. 1973 Feb 16;291(3):795–800. doi: 10.1016/0005-2736(73)90484-7. [DOI] [PubMed] [Google Scholar]
  5. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  6. Lane L. K., Copenhaver J. H., Jr, Lindenmayer G. E., Schwartz A. Purification and characterization of and (3H)ouabain binding to the transport adenosine triphosphatase from outer medulla of canine kidney. J Biol Chem. 1973 Oct 25;248(20):7197–7200. [PubMed] [Google Scholar]
  7. Matsui H., Schwartz A. Mechanism of cardiac glycoside inhibition of the (Na+-K+)-dependent ATPase from cardiac tissue. Biochim Biophys Acta. 1968 Mar 25;151(3):655–663. doi: 10.1016/0005-2744(68)90013-2. [DOI] [PubMed] [Google Scholar]
  8. Schwartz A., Allen J. C., Harigaya S. Possible involvement of cardiac Na+, K+-adenosine triphosphatase in the mechanism of action of cardiac glycosides. J Pharmacol Exp Ther. 1969 Jul;168(1):31–41. [PubMed] [Google Scholar]
  9. Schwartz A., Matsui H., Laughter A. H. Tritiated digoxin binding to (Na+ + K+)-activated adenosine triphosphatase: possible allosteric site. Science. 1968 Apr 19;160(3825):323–325. doi: 10.1126/science.160.3825.323. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES