Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Jun;71(6):2558–2562. doi: 10.1073/pnas.71.6.2558

Functional Differences in the Multiple Hemocyanins of the Horseshoe Crab, Limulus polyphemus L

Bolling Sullivan 1, Joseph Bonaventura 1, Celia Bonaventura 1
PMCID: PMC388499  PMID: 4210212

Abstract

Hemocyanin in the hemolymph of the horseshoe crab, Limulus polyphemus L., is a high-molecular-weight copper protein which binds oxygen cooperatively and shows a higher oxygen affinity at pH 7 than at pH 9. Treatment with EDTA (ethylenediaminetetra-acetate) disaggregates the hemocyanin molecules and abolishes both the reverse Bohr effect and cooperative oxygen binding. Chloride ions interact with the EDTA-treated material and, in the presence of saturating amounts of NaCl, a reverse Bohr effect is restored, but cooperativity is not. The EDTA-treated hemocyanin contains at least five electrophoretically distinct hemocyanins. These hemocyanins have similar molecular weights (about 66,000) but are functionally dissimilar. They have different oxygen affinities and different responses to chloride ions. The effect of chloride ions on unfractionated hemocyanin is due to pH-dependent chloride interactions with only two of the five hemocyanin components. The functional differences between the hemocyanin components may provide Limulus with a valuable respiratory flexibility in its interaction with the environment. The kinetics of oxygen combination and dissociation for the various hemocyanin preparations show that variations in the rate of oxygen dissociation are primarily responsible for the observed differences in oxygen affinity. The rate of oxygen dissociation varies 20-fold under conditions where the apparent rate of oxygen combination shows less than a 2-fold variation. Cooperative interactions in the untreated hemocyanin are most obvious in the “off” reaction, which increases in rate as successive oxygen molecules are released.

Keywords: chloride effects, copper proteins, oxygen binding, hemocyanin components, Bohr effects

Full text

PDF
2560

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Brunori M., Bonaventura J., Bonaventura C., Giardina B., Bossa F., Antonini E. Hemoglobins from trout: structural and functional properties. Mol Cell Biochem. 1973 Jun 27;1(2):189–196. doi: 10.1007/BF01659329. [DOI] [PubMed] [Google Scholar]
  2. Carpenter D. E., Van Holde K. E. Amino acid composition, amino-terminal analysis, and subunit structure of Cancer magister hemocyanin. Biochemistry. 1973 Jun 5;12(12):2231–2238. doi: 10.1021/bi00736a008. [DOI] [PubMed] [Google Scholar]
  3. DAVIS B. J. DISC ELECTROPHORESIS. II. METHOD AND APPLICATION TO HUMAN SERUM PROTEINS. Ann N Y Acad Sci. 1964 Dec 28;121:404–427. doi: 10.1111/j.1749-6632.1964.tb14213.x. [DOI] [PubMed] [Google Scholar]
  4. Dijk J., Brouwer M., Coert A., Gruber M. Structure and function of hemocyanins. VII. The smallest subunit of alpha- and beta-hemocyanin of Helix pomatia: size, composition, N- and C-terminal amino acids. Biochim Biophys Acta. 1970 Dec 22;221(3):467–479. doi: 10.1016/0005-2795(70)90217-5. [DOI] [PubMed] [Google Scholar]
  5. Elliott F. G., Witters R., Borginon H., Lontie R. The haemocyanin of Pila leopoldvillensis. 3. The dissociation studied by ultracentrifugation, Comparison with the -haemocyanin of Helix pomatia. Comp Biochem Physiol B. 1972 Aug 15;42(4):649–657. doi: 10.1016/0305-0491(72)90326-4. [DOI] [PubMed] [Google Scholar]
  6. Falkowski P. The respiratory physiology of hemocyanin in Limulus polyphemus. J Exp Zool. 1973 Oct;186(1):1–6. doi: 10.1002/jez.1401860102. [DOI] [PubMed] [Google Scholar]
  7. Fernández-Morán H., van Bruggen E. F., Ohtsuki M. Macromolecular organization of hemocyanins and apohemocyanins as revealed by electron microscopy. J Mol Biol. 1966 Mar;16(1):191–207. doi: 10.1016/s0022-2836(66)80272-3. [DOI] [PubMed] [Google Scholar]
  8. Ghiretti-Magaldi A., Nuzzolo C., Ghiretti F. Chemical studies on hemocyanins. I. Amino acid composition. Biochemistry. 1966 Jun;5(6):1943–1951. doi: 10.1021/bi00870a022. [DOI] [PubMed] [Google Scholar]
  9. Gielens C., Préaux G., Lontie R. Isolation of the smallest functional subunit of "Helix pomatia" haemocyanin. Arch Int Physiol Biochim. 1973 Feb;81(1):182–183. [PubMed] [Google Scholar]
  10. Ke C. H., Schubert J., Lin C. I., Li N. C. Nuclear magnetic resonance study of the binding of glycine derivatives to hemocyanin. J Am Chem Soc. 1973 May 16;95(10):3375–3379. doi: 10.1021/ja00791a049. [DOI] [PubMed] [Google Scholar]
  11. Konings W. N., Dijk J., Wichertjes T., Beuvery E. C., Gruber M. Structure and properties of hemocyanins. IV. Dissociation of Helix pomatia hemocyanin by succinylation into functional subunits. Biochim Biophys Acta. 1969 Aug 12;188(1):43–54. [PubMed] [Google Scholar]
  12. Konings W. N., Siezen R. J., Gruber M. Structure and properties of hemocyanins. VI. Association-dissociation behavior of Helix pomatia hemocyanin. Biochim Biophys Acta. 1969 Dec 23;194(2):376–385. doi: 10.1016/0005-2795(69)90098-1. [DOI] [PubMed] [Google Scholar]
  13. LARIMER J. L., RIGGS A. F. PROPERTIES OF HEMOCYANINS. I. THE EFFECT OF CALCIUM IONS ON THE OXYGEN EQUILIBRIUM OF CRAYFISH HEMOCYANIN. Comp Biochem Physiol. 1964 Sep;13:35–46. doi: 10.1016/0010-406x(64)90082-9. [DOI] [PubMed] [Google Scholar]
  14. Loehr J. S., Mason H. S. Dimorphism of Cancer magister hemocyanin subunits. Biochem Biophys Res Commun. 1973 Apr 2;51(3):741–745. doi: 10.1016/0006-291x(73)91378-8. [DOI] [PubMed] [Google Scholar]
  15. Lontie R., De Ley M., Robberecht H., Witters R. Isolation of small functional subunits of Helix pomatia haemocyanin after subtilisin treatment. Nat New Biol. 1973 Apr 11;242(119):180–182. doi: 10.1038/newbio242180a0. [DOI] [PubMed] [Google Scholar]
  16. Millikan G. A. The kinetics of blood pigments: haemocyanin and haemoglobin. J Physiol. 1933 Sep 4;79(2):158–179. doi: 10.1113/jphysiol.1933.sp003037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. ORNSTEIN L. DISC ELECTROPHORESIS. I. BACKGROUND AND THEORY. Ann N Y Acad Sci. 1964 Dec 28;121:321–349. doi: 10.1111/j.1749-6632.1964.tb14207.x. [DOI] [PubMed] [Google Scholar]
  18. Powers D. A., Edmundson A. B. Multiple hemoglobins of catostomid fish. I. Isolation and characterization of the isohemoglobins from Catostomus clarkii. J Biol Chem. 1972 Oct 25;247(20):6686–6693. [PubMed] [Google Scholar]
  19. RIGGS A. F., WOLBACH R. A. Sulfhydryl groups and the structure of hemoglobin. J Gen Physiol. 1956 Mar 20;39(4):585–605. doi: 10.1085/jgp.39.4.585. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Salvato B., Sartore S., Rizzotti M., Magaldi A. G. Molecular weight determination of polypeptide chains of molluscan and arthropod hemocyanins. FEBS Lett. 1972 Apr 15;22(1):5–7. doi: 10.1016/0014-5793(72)80204-7. [DOI] [PubMed] [Google Scholar]
  21. VANHOLDE K. E., COHEN L. B. PHYSICAL STUDIES OF HEMOCYANINS. I. CHARACTERIZATION AND SUBUNIT STRUCTURE OF LOLIGO PEALEI HEMOCYANIN. Biochemistry. 1964 Dec;3:1803–1808. doi: 10.1021/bi00900a001. [DOI] [PubMed] [Google Scholar]
  22. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]
  23. Wood E. J., Dalgleish D. G. Murex trunculus haemocyanin. 2. The oxygenation reaction and circular dichroism. Eur J Biochem. 1973 Jun 15;35(3):421–427. doi: 10.1111/j.1432-1033.1973.tb02854.x. [DOI] [PubMed] [Google Scholar]
  24. Wood E. J., Peacocke A. R. Murex trunculus haemocyanin. I. Physical properties and pH-induced dissociation. Eur J Biochem. 1973 Jun 15;35(3):410–420. doi: 10.1111/j.1432-1033.1973.tb02853.x. [DOI] [PubMed] [Google Scholar]
  25. van BRUGGEN E., WIEBENGA E. H., GRUBER M. Structure and properties of hemocyanins. I. Electron micrographs of hemocyanin and apohemocyanin from Helix pomatia at different pH values. J Mol Biol. 1962 Jan;4:1–7. [PubMed] [Google Scholar]
  26. van Driel R. Oxygen binding and subunit interactions in Helix pomatia hemocyanin. Biochemistry. 1973 Jul 3;12(14):2696–2698. doi: 10.1021/bi00738a023. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES