Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Aug;71(8):3162–3166. doi: 10.1073/pnas.71.8.3162

Sister Chromatid Exchanges, Indices of Human Chromosome Damage and Repair: Detection by Fluorescence and Induction by Mitomycin C

Samuel A Latt 1,2,3,*
PMCID: PMC388642  PMID: 4137928

Abstract

Sister chromatid exchanges in chromosomes from human lymphocytes grown two replication cycles in medium containing 5-bromodeoxyuridine can be detected by fluorescence microscopy after staining with the bisbenzimidazole dye 33258 Hoechst. These exchanges are much more frequent than chromosome or chromatid breaks and appear to be partly but not entirely due to 5-bromodeoxyuridine incorporation. Sister chromatid exchanges are extremely sensitive indicators of chromosome damage produced by DNA cross-linking agents such as mitomycin C. Significant increases in the sister chromatid exchange frequency occur with 3 ng/ml of mitomycin C; higher concentrations of mitomycin C induce further sister chromatid exchanges. Comparatively few gross chromosomal aberrations are seen in cells exhibiting as many as one hundred or more sister chromatid exchanges. Most of the damage caused by mitomycin C to chromosomal DNA is apparently repaired without detectable changes in chromosome morphology. Analysis of sister chromatid exchanges may permit more sensitive detection of damage to DNA caused by other agents than has previously been possible by classical cytological techniques.

Keywords: 33258 Hoechst, 5-bromodeoxyuridine-dependent fluorescence, isochromatid labeling

Full text

PDF
3165

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Caspersson T., Lindsten J., Lomakka G., Moller A., Zech L. The use of fluorescence techniques for the recognition of mammalian chromosomes and chromosome regions. Int Rev Exp Pathol. 1972;11:1–72. [PubMed] [Google Scholar]
  2. Chu E. H. Effects of ultraviolet radiation on mammalian cells. I. Induction of chromosome aberrations. Mutat Res. 1965 Feb;2(1):75–94. doi: 10.1016/0027-5107(65)90010-2. [DOI] [PubMed] [Google Scholar]
  3. Cleaver J. E. Xeroderma pigmentosum: a human disease in which an initial stage of DNA repair is defective. Proc Natl Acad Sci U S A. 1969 Jun;63(2):428–435. doi: 10.1073/pnas.63.2.428. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cole R. S. Repair of DNA containing interstrand crosslinks in Escherichia coli: sequential excision and recombination. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1064–1068. doi: 10.1073/pnas.70.4.1064. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Comings D. E. The structure and function of chromatin. Adv Hum Genet. 1972;3:237–431. doi: 10.1007/978-1-4757-4429-3_5. [DOI] [PubMed] [Google Scholar]
  6. Freifelder D. Rate of production of single-strand breaks in DNA by x-irradiation in situ. J Mol Biol. 1968 Jul 28;35(2):303–309. doi: 10.1016/s0022-2836(68)80026-9. [DOI] [PubMed] [Google Scholar]
  7. Gatti M., Olivieri G. The effect of x-rays on labelling pattern of M 1 and M 2 chromosomes in Chinese hamster cells. Mutat Res. 1973 Jan;17(1):101–112. doi: 10.1016/0027-5107(73)90258-3. [DOI] [PubMed] [Google Scholar]
  8. German J., La Rock J. Chromosomal effects of mitomycin, a potential recombinogen in mammalian cell genetics. Tex Rep Biol Med. 1969 Summer;27(2):409–418. [PubMed] [Google Scholar]
  9. Gibson D. A., Prescott D. M. Induction of sister chromatid exchanges in chromosomes of rat kangaroo cells by tritium incorporated into DNA. Exp Cell Res. 1972 Oct;74(2):397–402. doi: 10.1016/0014-4827(72)90393-x. [DOI] [PubMed] [Google Scholar]
  10. Gibson D. A., Prescott D. M. Sister chromatid exchanges in isolabeling. Exp Cell Res. 1974 Feb;83(2):445–447. doi: 10.1016/0014-4827(74)90368-1. [DOI] [PubMed] [Google Scholar]
  11. HSU T. C., SOMERS C. E. Effect of 5-bromodeoxyuridine on mamalian chromosomes. Proc Natl Acad Sci U S A. 1961 Mar 15;47:396–403. doi: 10.1073/pnas.47.3.396. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Howard-Flanders P., Lin P. F. Genetic recombination induced by DNA cross-links in repressed phage lambda. Genetics. 1973 Apr;73(Suppl):85–90. [PubMed] [Google Scholar]
  13. IYER V. N., SZYBALSKI W. A MOLECULAR MECHANISM OF MITOMYCIN ACTION: LINKING OF COMPLEMENTARY DNA STRANDS. Proc Natl Acad Sci U S A. 1963 Aug;50:355–362. doi: 10.1073/pnas.50.2.355. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Kato H. Induction of sister chromatid exchanges by UV light and its inhibition by caffeine. Exp Cell Res. 1973 Dec;82(2):383–390. doi: 10.1016/0014-4827(73)90356-x. [DOI] [PubMed] [Google Scholar]
  15. Latt S. A. Localization of sister chromatid exchanges in human chromosomes. Science. 1974 Jul 5;185(4145):74–76. doi: 10.1126/science.185.4145.74. [DOI] [PubMed] [Google Scholar]
  16. Lett J. T., Caldwell I., Dean C. J., Alexander P. Rejoining of x-ray induced breaks in the DNA of leukaemia cells. Nature. 1967 May 20;214(5090):790–792. doi: 10.1038/214790a0. [DOI] [PubMed] [Google Scholar]
  17. MARIN G., PRESCOTT D. M. THE FREQUENCY OF SISTER CHROMATID EXCHANGES FOLLOWING EXPOSURE TO VARYING DOSES OF H3-THYMIDINE OR X-RAYS. J Cell Biol. 1964 May;21:159–167. doi: 10.1083/jcb.21.2.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Morad M., Jonasson J., Lindsten J. Distribution of mitomycin C induced breaks on human chromosomes. Hereditas. 1973;74(2):273–281. doi: 10.1111/j.1601-5223.1973.tb01128.x. [DOI] [PubMed] [Google Scholar]
  19. NOWELL P. C. MITOTIC INHIBITION AND CHROMOSOME DAMAGE BY MITOMYCIN IN HUMAN LEUKOCYTE CULTURES. Exp Cell Res. 1964 Feb;33:445–449. doi: 10.1016/0014-4827(64)90008-4. [DOI] [PubMed] [Google Scholar]
  20. SHAW M. W., COHEN M. M. CHROMOSOME EXCHANGES IN HUMAN LEUKOCYTES INDUCED BY MITOMYCIN C. Genetics. 1965 Feb;51:181–190. doi: 10.1093/genetics/51.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sasaki M. S., Norman A. Proliferation of human lymphocytes in culture. Nature. 1966 May 28;210(5039):913–914. doi: 10.1038/210913a0. [DOI] [PubMed] [Google Scholar]
  22. Sasaki M. S., Norman A. Selection against chromosome aberrations in human lymphocytes. Nature. 1967 Apr 29;214(5087):502–503. doi: 10.1038/214502a0. [DOI] [PubMed] [Google Scholar]
  23. Setlow R. B., Setlow J. K. Effects of radiation on polynucleotides. Annu Rev Biophys Bioeng. 1972;1:293–346. doi: 10.1146/annurev.bb.01.060172.001453. [DOI] [PubMed] [Google Scholar]
  24. Taylor J. H., Woods P. S., Hughes W. L. THE ORGANIZATION AND DUPLICATION OF CHROMOSOMES AS REVEALED BY AUTORADIOGRAPHIC STUDIES USING TRITIUM-LABELED THYMIDINEE. Proc Natl Acad Sci U S A. 1957 Jan 15;43(1):122–128. doi: 10.1073/pnas.43.1.122. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES