Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1974 Aug;71(8):3290–3293. doi: 10.1073/pnas.71.8.3290

Gibberellic Acid Causes Increased Synthesis of RNA Which Contains Poly(A) in Barley Aleurone Tissue

John V Jacobsen 1, John A Zwar 1
PMCID: PMC388671  PMID: 4528576

Abstract

Incubation of isolated barley aleurone layers with gibberellic acid for 16 hr caused a 50% increase in the synthesis of RNA that contains poly(A) sequences [poly(A)-RNA], but had no measurable effect on the syntheses of the major RNA species. The syntheses of both the poly(A) and the heteropolymeric fractions of the poly(A)-RNA were increased.

The poly(A) sequences were separated into two classes by size, one containing an average of 250 nucleotides and the other about 70 nucleotides. The two classes occurred in a molar ratio of about 1:1. Gibberellic acid increased the syntheses of both sequences to the same extent.

We interpret these results to mean that gibberellic acid increases specifically the synthesis of mRNA in this tissue.

Keywords: poly(U)-cellulose columns, polyacrylamide gel electrophoresis, base analyses

Full text

PDF
3292

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adesnik M., Salditt M., Thomas W., Darnell J. E. Evidence that all messenger RNA molecules (except histone messenger RNA) contain Poly (A) sequences and that the Poly(A) has a nuclear function. J Mol Biol. 1972 Oct 28;71(1):21–30. doi: 10.1016/0022-2836(72)90397-x. [DOI] [PubMed] [Google Scholar]
  2. Chrispeels M. J., Varner J. E. Gibberellic Acid-enhanced synthesis and release of alpha-amylase and ribonuclease by isolated barley and aleurone layers. Plant Physiol. 1967 Mar;42(3):398–406. doi: 10.1104/pp.42.3.398. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Click R. E., Hackett D. P. The isolation of ribonucleic acid from plant, bacterial or animal cells. Biochim Biophys Acta. 1966 Oct 24;129(1):74–84. doi: 10.1016/0005-2787(66)90010-4. [DOI] [PubMed] [Google Scholar]
  4. Darnell J. E., Philipson L., Wall R., Adesnik M. Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science. 1971 Oct 29;174(4008):507–510. doi: 10.1126/science.174.4008.507. [DOI] [PubMed] [Google Scholar]
  5. Dingman C. W., Peacock A. C. Analytical studies on nuclear ribonucleic acid using polyacrylamide gel electrophoresis. Biochemistry. 1968 Feb;7(2):659–668. doi: 10.1021/bi00842a022. [DOI] [PubMed] [Google Scholar]
  6. Edmonds M., Vaughan M. H., Jr, Nakazato H. Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1336–1340. doi: 10.1073/pnas.68.6.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Edmonds M., Vaughan M. H., Jr, Nakazato H. Polyadenylic acid sequences in the heterogeneous nuclear RNA and rapidly-labeled polyribosomal RNA of HeLa cells: possible evidence for a precursor relationship. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1336–1340. doi: 10.1073/pnas.68.6.1336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Filner P., Varner J. E. A test for de novo synthesis of enzymes: density labeling with H2O18 of barley alpha-amylase induced by gibberellic acid. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1520–1526. doi: 10.1073/pnas.58.4.1520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Higgins T. J., Mercer J. F., Goodwin P. B. Poly(A) sequences in plant polysomal RNA. Nat New Biol. 1973 Nov 21;246(151):68–70. doi: 10.1038/newbio246068a0. [DOI] [PubMed] [Google Scholar]
  10. Hirsch M., Penman S. Mitochondrial polyadenylic acid-containing RNA: localization and characterization. J Mol Biol. 1973 Nov 5;80(3):379–391. doi: 10.1016/0022-2836(73)90410-5. [DOI] [PubMed] [Google Scholar]
  11. Jacobsen J. V., Varner J. E. Gibberellic Acid-induced synthesis of protease by isolated aleurone layers of barley. Plant Physiol. 1967 Nov;42(11):1596–1600. doi: 10.1104/pp.42.11.1596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Johri M. M., Varner J. E. Characterization of rapidly labeled ribonucleic acid from dwarf peas. Plant Physiol. 1970 Mar;45(3):348–357. doi: 10.1104/pp.45.3.348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Key J. L., Leaver C. J., Cowles J. R., Anderson J. M. Characterization of Short Time Labeled Adenosine Monophosphate-rich Ribonucleic Acids of Soybean. Plant Physiol. 1972 May;49(5):783–788. doi: 10.1104/pp.49.5.783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lai M. M., Duesberg P. H. Adenylic acid-rich sequence in RNAs of Rous sarcoma virus and Rauscher mouse leukaemia virus. Nature. 1972 Feb 18;235(5338):383–386. doi: 10.1038/235383c0. [DOI] [PubMed] [Google Scholar]
  15. Lee S. Y., Mendecki J., Brawerman G. A polynucleotide segment rich in adenylic acid in the rapidly-labeled polyribosomal RNA component of mouse sarcoma 180 ascites cells. Proc Natl Acad Sci U S A. 1971 Jun;68(6):1331–1335. doi: 10.1073/pnas.68.6.1331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Manahan C. O., App A. A., Still C. C. The presence of polyadenylate sequences in the ribonucleic acid of a higher plant. Biochem Biophys Res Commun. 1973 Jul 17;53(2):588–595. doi: 10.1016/0006-291x(73)90702-x. [DOI] [PubMed] [Google Scholar]
  17. O'Malley B. W., Rosenfeld G. C., Comstock J. P., Means A. R. Steroid hormone induction of a specific translatable messenger RNA. Nat New Biol. 1972 Nov 8;240(97):45–48. doi: 10.1038/newbio240045a0. [DOI] [PubMed] [Google Scholar]
  18. Perry R. P., Kelley D. E. Messenger RNA-protein complexes and newly synthesized ribosomal subunits: analysis of free particles and components of polyribosomes. J Mol Biol. 1968 Jul 14;35(1):37–59. doi: 10.1016/s0022-2836(68)80035-x. [DOI] [PubMed] [Google Scholar]
  19. Perry R. P., La Torre J., Kelley D. E., Greenberg J. R. On the lability of poly(A) sequences during extraction of messenger RNA from polyribosomes. Biochim Biophys Acta. 1972 Mar 14;262(2):220–226. doi: 10.1016/0005-2787(72)90236-5. [DOI] [PubMed] [Google Scholar]
  20. SEBRING E. D., SALZMAN N. P. AN IMPROVED PROCEDURE FOR MEASURING THE DISTRIBUTION OF P32O4--AMONG THE NUCLEOTIDES OF RIBONUCLEIC ACID. Anal Biochem. 1964 May;8:126–129. doi: 10.1016/0003-2697(64)90177-0. [DOI] [PubMed] [Google Scholar]
  21. Sasaki K., Tazawa T. Polyriboadenylate synthesizing activity in chromatin of wheat seedlings. Biochem Biophys Res Commun. 1973 Jun 19;52(4):1440–1449. doi: 10.1016/0006-291x(73)90662-1. [DOI] [PubMed] [Google Scholar]
  22. Sheiness D., Darnell J. E. Polyadenylic acid segment in mRNA becomes shorter with age. Nat New Biol. 1973 Feb 28;241(113):265–268. doi: 10.1038/newbio241265a0. [DOI] [PubMed] [Google Scholar]
  23. Sheldon R., Jurale C., Kates J. Detection of polyadenylic acid sequences in viral and eukaryotic RNA(polu(U)-cellulose columns-poly(U) filters-fiberglass-HeLa cells-bacteriophage T4). Proc Natl Acad Sci U S A. 1972 Feb;69(2):417–421. doi: 10.1073/pnas.69.2.417. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Van de Walle C. Polyadenylic sequences in plant RNA. FEBS Lett. 1973 Aug 1;34(1):31–34. doi: 10.1016/0014-5793(73)80696-9. [DOI] [PubMed] [Google Scholar]
  25. Varner J. E. Gibberellic Acid Controlled Synthesis of alpha-Amylase in Barley Endosperm. Plant Physiol. 1964 May;39(3):413–415. doi: 10.1104/pp.39.3.413. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Zwar J. A., Jacobsen J. V. A Correlation between a Ribonucleic Acid Fraction Selectively Labeled in the Presence of Gibberellic Acid and Amylase Synthesis in Barley Aleurone Layers. Plant Physiol. 1972 Jun;49(6):1000–1006. doi: 10.1104/pp.49.6.1000. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES