Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1975 Nov;72(11):4346–4350. doi: 10.1073/pnas.72.11.4346

Effect of extradiol-17beta on the synthesis of specific uterine nonhistone chromosomal proteins.

M E Cohen, T H Hamilton
PMCID: PMC388718  PMID: 172905

Abstract

The synthesis of specific nonhistone chromosomal proteins in the uterus of the ovariectomized rat was examined as a function of time after treatment with estradiol-17beta. Sequential stimulations in the rates of synthesis of at least five nonhistone chromosomal proteins having molecular weights of 96,000, 70,500, 29,400, 20,700, and 16,400, respectively, were observed. The rate of synthesis of the nonhistone chromosomal protein having a molecular weight of 70,500 was increased at 1 hr after hormone treatment. This was the first nonhistone chromosomal protein to be induced by estrogen, and its induction was blocked by pretreatment with actinomycin D. The data reported suggest but do not prove that this protein is the 4.5 S estrogen receptor, and that it is the induced nuclear acidic protein described earlier by Teng and Hamilton. The rates of synthesis of the nonhistone proteins with molecular weights of 96,000, 29,400, 20,700, and 16,400 were increased at 3,5,24, and 24 hr, respectively, after hormone treatment.

Full text

PDF
4349

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Cohen M. E., Hamilton T. H. Sequential stimulation of synthesis of two specific cytoplasmic proteins in early estrogen action. Biochem Biophys Res Commun. 1975 May 19;64(2):633–639. doi: 10.1016/0006-291x(75)90368-x. [DOI] [PubMed] [Google Scholar]
  2. Elgin S. C., Bonner J. Limited heterogeneity of the major nonhistone chromosomal proteins. Biochemistry. 1970 Oct 27;9(22):4440–4447. doi: 10.1021/bi00824a027. [DOI] [PubMed] [Google Scholar]
  3. Hamilton T. H., Widnell C. C., Tata J. R. Synthesis of ribonucleic acid during early estrogen action. J Biol Chem. 1968 Jan 25;243(2):408–417. [PubMed] [Google Scholar]
  4. Jensen E. V., DeSombre E. R. Mechanism of action of the female sex hormones. Annu Rev Biochem. 1972;41:203–230. doi: 10.1146/annurev.bi.41.070172.001223. [DOI] [PubMed] [Google Scholar]
  5. Jensen E. V., Suzuki T., Kawashima T., Stumpf W. E., Jungblut P. W., DeSombre E. R. A two-step mechanism for the interaction of estradiol with rat uterus. Proc Natl Acad Sci U S A. 1968 Feb;59(2):632–638. doi: 10.1073/pnas.59.2.632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. McGuire J. L., Lisk R. D. Estrogen receptors in the intact rat. Proc Natl Acad Sci U S A. 1968 Oct;61(2):497–503. doi: 10.1073/pnas.61.2.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Nicolette J. A., Lemahieu M. A., Mueller G. C. A role of estrogens in the regulation of RNA polymerase in surviving rat uteri. Biochim Biophys Acta. 1968 Sep 24;166(2):403–409. doi: 10.1016/0005-2787(68)90228-1. [DOI] [PubMed] [Google Scholar]
  8. O'Malley B. W., Means A. R. Female steroid hormones and target cell nuclei. Science. 1974 Feb 15;183(4125):610–620. doi: 10.1126/science.183.4125.610. [DOI] [PubMed] [Google Scholar]
  9. PETERS T., Jr The biosynthesis of rat serum albumin. II. Intracellular phenomena in the secretion of newly formed albumin. J Biol Chem. 1962 Apr;237:1186–1189. [PubMed] [Google Scholar]
  10. Shapiro A. L., Viñuela E., Maizel J. V., Jr Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 1967 Sep 7;28(5):815–820. doi: 10.1016/0006-291x(67)90391-9. [DOI] [PubMed] [Google Scholar]
  11. Singer R. H., Penman S. Messenger RNA in HeLa cells: kinetics of formation and decay. J Mol Biol. 1973 Aug 5;78(2):321–334. doi: 10.1016/0022-2836(73)90119-8. [DOI] [PubMed] [Google Scholar]
  12. Stancel G. M., Leung K. M., Gorski J. Estrogen receptors in the rat uterus. Relationship between cytoplasmic and nuclear forms of the estrogen binding protein. Biochemistry. 1973 May 22;12(11):2137–2141. doi: 10.1021/bi00735a019. [DOI] [PubMed] [Google Scholar]
  13. Stein G., Baserga R. Nuclear proteins and the cell cycle. Adv Cancer Res. 1972;15:287–330. doi: 10.1016/s0065-230x(08)60378-4. [DOI] [PubMed] [Google Scholar]
  14. Teng C. S., Hamilton T. H. Regulation by estrogen of organ-specific synthesis of a nuclear acidic protein. Biochem Biophys Res Commun. 1970 Sep 10;40(5):1231–1238. doi: 10.1016/0006-291x(70)90927-7. [DOI] [PubMed] [Google Scholar]
  15. Teng C. S., Hamilton T. H. Role of chromatin in estrogen action in the uterus. II. Hormone-induced synthesis of nonhistone acidic proteins which restore histone-inhibited DNA-dependent RNA synthesis. Proc Natl Acad Sci U S A. 1969 Jun;63(2):465–472. doi: 10.1073/pnas.63.2.465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Weber K., Osborn M. The reliability of molecular weight determinations by dodecyl sulfate-polyacrylamide gel electrophoresis. J Biol Chem. 1969 Aug 25;244(16):4406–4412. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES