Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Mar;68(3):625–628. doi: 10.1073/pnas.68.3.625

Electron Spin Resonance of Chlorophyll and the Origin of Signal I in Photosynthesis

J R Norris 1, R A Uphaus 1, H L Crespi 1, J J Katz 1
PMCID: PMC389003  PMID: 4993385

Abstract

A comparison has been made between Signal I, the photo-electron spin resonance signal associated with the primary light conversion act in photosynthesis, and free-radical signals generated in various chlorophyll species in vitro. The esr signals obtained from chlorophyll·monomer, (Chl·L)+., chlorophyll dimer, (Chl2)+., and chlorophyll oligomer, (Chl2)n+., are broader than Signal I, whereas the chlorophyll-water adduct, (Chl·H2O)n+., gives a signal very much narrower than Signal I. The unusually narrow signal from (Chl·H2O)n+. has been ascribed to spin migration, or to unpaired spin delocalization over a large number of chlorophyll molecules. The linewidth of Signal I can be accounted for by a similar delocalization process. A theoretical relationship between the esr linewidth and the number of chlorophyll molecules, N, over which an unpaired spin is delocalized, takes the form ΔHN = 1/√N·ΔHM, where ΔHM is the linewidth of monomer (Chl·L)+.. This relationship for N = 2 accounts well for the linewidths of Signal I in green algae, blue-green algae, and photosynthetic bacteria in both the 1H- and 2H-forms. The linewidth of Signal I (as well as the optical properties of reaction-center chlorophyll) are consistent with unpaired spin delocalization over an entity containing two chlorophyll molecules, (Chl·H2O·Chl)+..

Full text

PDF
627

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANDERSON A. F., CALVIN M. ELECTRON SPIN RESONANCE OF CRYSTALLINE CHLOROPHYLL A AND CRUDE MIXTURES OF CHLOROPHYLL A WITH NORMALLY ASSOCIATED PIGMENTS. Nature. 1963 Jul 20;199:241–243. doi: 10.1038/199241a0. [DOI] [PubMed] [Google Scholar]
  2. Androes G. M., Singleton M. F., Calvin M. EPR IN CHROMATOPHORES FROM RHODOSPIRILLUM RUBRUM AND IN QUANTASOMES FROM SPINACH CHLOROPLASTS. Proc Natl Acad Sci U S A. 1962 Jun;48(6):1022–1031. doi: 10.1073/pnas.48.6.1022. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Ballschmiter K., Cotton T. M., Strain H. H., Katz J. J. Chlorophyll-water interactions. Hydration, dehydration and hydrates of chlorophyll. Biochim Biophys Acta. 1969 Jun 24;180(2):347–359. doi: 10.1016/0005-2728(69)90119-4. [DOI] [PubMed] [Google Scholar]
  4. Ballschmiter K., Truesdell K., Katz J. J. Aggregation of chlorophyll in nonpolar solvents from molecular weight measurements. Biochim Biophys Acta. 1969 Sep 2;184(3):604–613. doi: 10.1016/0304-4165(69)90275-x. [DOI] [PubMed] [Google Scholar]
  5. Ballshmiter K., Katz J. J. Long wavelength forms of chlorophyll. Nature. 1968 Dec 21;220(5173):1231–1233. doi: 10.1038/2201231a0. [DOI] [PubMed] [Google Scholar]
  6. Bolton J. R., Clayton R. K., Reed D. W. An identification of the radical giving rise to the light-induced electron spin resonance signal in photosynthetic bacteria. Photochem Photobiol. 1969 Mar;9(3):209–218. doi: 10.1111/j.1751-1097.1969.tb07285.x. [DOI] [PubMed] [Google Scholar]
  7. Bolton J. R., Cost K., Frenkel A. W. A kinetic study of the production of light-induced ESR signals in Rhodospirillum rubrum chromatophores. Arch Biochem Biophys. 1968 Aug;126(2):383–387. doi: 10.1016/0003-9861(68)90421-9. [DOI] [PubMed] [Google Scholar]
  8. Borg D. C., Fajer J., Felton R. H., Dolphin D. The pi-Cation Radical of Chlorophyll a. Proc Natl Acad Sci U S A. 1970 Oct;67(2):813–820. doi: 10.1073/pnas.67.2.813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brody S. S., Brody M. An experiment showing that P700 can be an aggregated form of chlorophyll a. Arch Biochem Biophys. 1965 Jun;110(3):583–585. doi: 10.1016/0003-9861(65)90453-4. [DOI] [PubMed] [Google Scholar]
  10. Calvin M., Sogo P. B. Primary Quantum Conversion Process in Photosynthesis: Electron Spin Resonance. Science. 1957 Mar 15;125(3246):499–500. doi: 10.1126/science.125.3246.499. [DOI] [PubMed] [Google Scholar]
  11. Commoner B., Heise J. J., Townsend J. LIGHT-INDUCED PARAMAGNETISM IN CHLOROPLASTS. Proc Natl Acad Sci U S A. 1956 Oct;42(10):710–718. doi: 10.1073/pnas.42.10.710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Cost K., Bolton J. R., Frenkel A. W. The interaction of the free radical of 5-methylphenazinium methyl sulfate with the light-induced free radical of Rhodospirillum rubrum chromatophores. Proc Natl Acad Sci U S A. 1967 Apr;57(4):868–875. doi: 10.1073/pnas.57.4.868. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Fuhrhop J. H., Mauzerall D. The one-electron oxidation of metalloporphyrins. J Am Chem Soc. 1969 Jul 16;91(15):4174–4181. doi: 10.1021/ja01043a027. [DOI] [PubMed] [Google Scholar]
  14. Katz J. J., Ballschmiter K., Garcia-Morin M., Strain H. H., Uphaus R. A. Electron paramagnetic resonance of chlorophyll-water aggregates. Proc Natl Acad Sci U S A. 1968 May;60(1):100–107. doi: 10.1073/pnas.60.1.100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kohl D. H., Townsend J., Commoner B., Crespi H. L., Dougherty R. C., Katz J. J. Effects of isotopic substitution on electron spin resonance signals in photosynthetic organisms. Nature. 1965 Jun 12;206(989):1105–1110. doi: 10.1038/2061105a0. [DOI] [PubMed] [Google Scholar]
  16. Kok B. Light Induced Absorption Changes in Photosynthetic Organisms. II. A Split-beam Difference Spectrophotometer. Plant Physiol. 1959 May;34(3):184–192. doi: 10.1104/pp.34.3.184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Loach P. A., Hadsell R. M., Sekura D. L., Stemer A. Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodospirillum rubrum. Biochemistry. 1970 Aug 4;9(16):3127–3135. doi: 10.1021/bi00818a003. [DOI] [PubMed] [Google Scholar]
  18. Loach P. A. Primary oxidation-reduction changes during photosynthesis in Rhodospirillum rubrum. Biochemistry. 1966 Feb;5(2):592–600. doi: 10.1021/bi00866a028. [DOI] [PubMed] [Google Scholar]
  19. Loach P. A., Sekura D. L., Hadsell R. M., Stemer A. Quantitative dissolution of the membrane and preparation of photoreceptor subunits from Rhodopseudomonas spheroides. Biochemistry. 1970 Feb 17;9(4):724–733. doi: 10.1021/bi00806a004. [DOI] [PubMed] [Google Scholar]
  20. Loach P. A., Sekura D. L. Primary photochemistry and electron transport in Rhodospirillum rubrum. Biochemistry. 1968 Jul;7(7):2642–2649. doi: 10.1021/bi00847a029. [DOI] [PubMed] [Google Scholar]
  21. Loach P. A., Walsh K. Quantum yield for the photoproduced electron paramagnetic resonance signal in chromatophores from Rhodospirillum rubrum. Biochemistry. 1969 May;8(5):1908–1913. doi: 10.1021/bi00833a021. [DOI] [PubMed] [Google Scholar]
  22. MAUZERALL D., FEHER G. A STUDY OF THE PHOTOINDUCED PORPHYRIN FREE RADICAL BY ELECTRON SPIN RESONANCE. Biochim Biophys Acta. 1964 Mar 30;79:430–432. [PubMed] [Google Scholar]
  23. McElroy J. D., Feher G., Mauzerall D. C. On the nature of the free radical formed during the primary process of bacterial photosynthesis. Biochim Biophys Acta. 1969 Jan 14;172(1):180–183. doi: 10.1016/0005-2728(69)90105-4. [DOI] [PubMed] [Google Scholar]
  24. Ogawa T., Vernon L. P. Chlorophyll a forms in partially purified photosynthetic reaction centers. Biochim Biophys Acta. 1970 Mar 3;197(2):332–334. doi: 10.1016/0005-2728(70)90047-2. [DOI] [PubMed] [Google Scholar]
  25. Sherman G., Fujimori E. Interactions between chlorophyll and water in the solid state: electron spin resonance. Nature. 1968 Jul 27;219(5152):375–377. doi: 10.1038/219375a0. [DOI] [PubMed] [Google Scholar]
  26. Sogo P. B., Pon N. G., Calvin M. PHOTO SPIN RESONANCE IN CHLOROPHYLL-CONTAINING PLANT MATERIAL. Proc Natl Acad Sci U S A. 1957 May 15;43(5):387–393. doi: 10.1073/pnas.43.5.387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Steffen H., Calvin M. The origin of the long wavelength absorption bands in purple bacteria. Biochem Biophys Res Commun. 1970 Oct 23;41(2):282–286. doi: 10.1016/0006-291x(70)90500-0. [DOI] [PubMed] [Google Scholar]
  28. Vernon L. P., Ke B., Shaw E. R. Relationship of P700, electron spin resonance signal, and photochemical activity of a small chloroplast particle obtained by the action of Triton X-100. Biochemistry. 1967 Jul;6(7):2210–2220. doi: 10.1021/bi00859a044. [DOI] [PubMed] [Google Scholar]
  29. Weaver E. C. Electron paramagnetic resonance signal produced by ferricyanide in photosynthetic plant materials. Biochim Biophys Acta. 1968 Aug 20;162(2):286–289. doi: 10.1016/0005-2728(68)90110-2. [DOI] [PubMed] [Google Scholar]
  30. Weaver E. C., Weaver H. E. Paramagnetic unit in spinach subchloroplast particles: estimation of size. Science. 1969 Aug 29;165(3896):906–907. doi: 10.1126/science.165.3896.906. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES