Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 May;68(5):873–876. doi: 10.1073/pnas.68.5.873

Isolation of an Organ-Specific Leucyl-tRNA Synthetase from Soybean Seedling

Jan Kanabus 1, Joe H Cherry 1
PMCID: PMC389069  PMID: 5280524

Abstract

The leucyl-tRNA synthetase activity from cotyledons of 4-day-old soybean seedlings has been fractionated into three components. One of these exclusively acylates two of the six tRNALeu species present in this tissue. The remaining two enzyme fractions charge the other four tRNALeu species equally well. Soybean hypocotyls appear to contain only the last two enzyme fractions.

Full text

PDF
873

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allende C. C., Allende J. E., Gatica M., Celis J., Mora G., Matamala M. The aminoacyl ribonucleic acid synthetases. I. Properties of the threonyladenylate-enzyme complex. J Biol Chem. 1966 May 25;241(10):2245–2251. [PubMed] [Google Scholar]
  2. Anderson M. B., Cherry J. H. Differences in leucyl-transfer rna's and synthetase in soybean seedlings. Proc Natl Acad Sci U S A. 1969 Jan;62(1):202–209. doi: 10.1073/pnas.62.1.202. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson W. F. The effect of tRNA concentration on the rate of protein synthesis. Proc Natl Acad Sci U S A. 1969 Feb;62(2):566–573. doi: 10.1073/pnas.62.2.566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Arceneaux J. L., Sueoka N. Two species of Bacillus subtilis tyrosine transfer ribonucleic acid. Biological properties and alteration in their relative amounts during growth. J Biol Chem. 1969 Nov 10;244(21):5959–5966. [PubMed] [Google Scholar]
  5. Axel R., Weinstein B., Farber E. Patterns of transfer RNA in normal rat liver and during hepatic carcinogenesis. Proc Natl Acad Sci U S A. 1967 Sep;58(3):1255–1260. doi: 10.1073/pnas.58.3.1255. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Barnett W. E., Brown D. H., Epler J. L. Mitochondrial-specific aminoacyl-RNA synthetases. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1775–1781. doi: 10.1073/pnas.57.6.1775. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Bick M. D., Liebke H., Cherry J. H., Strehler B. L. Changes in leucyl- and tyrosyl-tRNA of soybean cotyledons during plant growth. Biochim Biophys Acta. 1970 Mar 19;204(1):175–182. doi: 10.1016/0005-2787(70)90500-9. [DOI] [PubMed] [Google Scholar]
  8. Bick M. D., Strehler B. L. Leucyl transfer RNA synthetase changes during soybean cotyledon senescence. Proc Natl Acad Sci U S A. 1971 Jan;68(1):224–228. doi: 10.1073/pnas.68.1.224. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Cherry J. H., Chroboczek H., Carpenter W. J., Richmond A. Nucleic Acid Metabolism in Peanut Cotyledons. Plant Physiol. 1965 May;40(3):582–587. doi: 10.1104/pp.40.3.582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Chlumecká V., Von Tigerstrom M., D'Obrenan P., Smith C. J. Purification and properties of lysyl transfer ribonucleic acid synthetase from bakers' yeast. J Biol Chem. 1969 Oct 25;244(20):5481–5488. [PubMed] [Google Scholar]
  11. Holland J. J., Taylor M. W., Buck C. A. Chromatographic differences between tyrosyl transfer RNA from different mammalian cells. Proc Natl Acad Sci U S A. 1967 Dec;58(6):2437–2444. doi: 10.1073/pnas.58.6.2437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Ilan J., Patel N. Mechanism of gene expression in Tenebrio molitor. Juvenile hormone determination of translational control through transfer ribonucleic acid and enzyme. J Biol Chem. 1970 Mar 25;245(6):1275–1281. [PubMed] [Google Scholar]
  13. Kano-Sueoka T., Sueoka N. Modification of leucyl-sRNA after bacteriophage infection. J Mol Biol. 1966 Sep;20(1):183–209. doi: 10.1016/0022-2836(66)90124-0. [DOI] [PubMed] [Google Scholar]
  14. Kull F. J., Jacobson K. B. Multiple phenylalanyl-transfer ribonucleic acid synthetase activities in the cytoplasm of Neurospora crassa. Proc Natl Acad Sci U S A. 1969 Apr;62(4):1137–1144. doi: 10.1073/pnas.62.4.1137. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Lee J. C., Ingram V. M. Erythrocyte transfer RNA: change during chick development. Science. 1967 Dec 8;158(3806):1330–1332. doi: 10.1126/science.158.3806.1330. [DOI] [PubMed] [Google Scholar]
  16. Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Peterson P. J. Amino acid selection in protein biosynthesis. Biol Rev Camb Philos Soc. 1967 Nov;42(4):552–613. doi: 10.1111/j.1469-185x.1967.tb01530.x. [DOI] [PubMed] [Google Scholar]
  18. Reger B. J., Fairfield S. A., Epler J. L., Barnett W. E. Identification and origin of some chloroplast aminoacyl-tRNA synthetases and tRNAs. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1207–1213. doi: 10.1073/pnas.67.3.1207. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rennert O. M., Hancock R. L. Adult and embryonic transfer RNA. Growth. 1970 Jun;34(2):209–214. [PubMed] [Google Scholar]
  20. SUEOKA N., KANO-SUEOKA T. A SPECIFIC MODIFICATION OF LEUCYL-SRNA OF ESCHERICHIA COLI AFTER PHAGE T2 INFECTION. Proc Natl Acad Sci U S A. 1964 Dec;52:1535–1540. doi: 10.1073/pnas.52.6.1535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Strehler B. L., Hendley D. D., Hirsch G. P. Evidence of a codon restriction hypothesis of cellular differentiation: multiplicity of mammalian leucyl-sRNA-specific synthetases and tissue-specific deficiency in an alanyl-sRNA synthetase. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1751–1758. doi: 10.1073/pnas.57.6.1751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Taglang R., Waller J. P., Befort N., Fasiolo F. Amino-acylation du tRNA-1-Val de Escherichia coli par la phénylalanyl-tRNA synthétase de levure. Eur J Biochem. 1970 Feb;12(3):550–557. doi: 10.1111/j.1432-1033.1970.tb00886.x. [DOI] [PubMed] [Google Scholar]
  23. Taylor M. W., Granger G. A., Buck C. A., Holland J. J. Similarities and differences among specific tRNA's in mammalian tissues. Proc Natl Acad Sci U S A. 1967 Jun;57(6):1712–1719. doi: 10.1073/pnas.57.6.1712. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Vescia A. Separation of two leucyl-ribonucleic acid synthetases from rat liver. Biochem Biophys Res Commun. 1967 Nov 30;29(4):496–500. doi: 10.1016/0006-291x(67)90511-6. [DOI] [PubMed] [Google Scholar]
  25. Vold B. S. Comparison of lysyl-transfer ribonucleic acid species from vegetative cells and spores of Bacillus subtilis by methylated albumin-kieselguhr and reversed-phase chromatography. J Bacteriol. 1970 Jun;102(3):711–715. doi: 10.1128/jb.102.3.711-715.1970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Waters L. C., Novelli G. D. A new change in leucine transfer RNA observed in Escherichia coli infected with bacteriophage T2. Proc Natl Acad Sci U S A. 1967 Apr;57(4):979–985. doi: 10.1073/pnas.57.4.979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Weiss J. F., Kelmers A. D. A new chromatographic system for increased resolution of transfer ribonucleic acids. Biochemistry. 1967 Aug;6(8):2507–2513. doi: 10.1021/bi00860a030. [DOI] [PubMed] [Google Scholar]
  28. Yang S. S., Sanadi D. R. Changes in the distribution of transfer ribonucleic acid species specifically induced by thyroxine. J Biol Chem. 1969 Sep 25;244(18):5081–5083. [PubMed] [Google Scholar]
  29. Yu C. T. Multiple forms of leucyl sRNA synthetase of E. coli. Cold Spring Harb Symp Quant Biol. 1966;31:565–570. doi: 10.1101/sqb.1966.031.01.073. [DOI] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES