Abstract
Messenger RNA is moved a distance of approximately three nucleotides in the 5′ direction relative to the ribosome during the translocation of peptidyl-tRNA from the A to the P site. This movement is catalyzed by G factor and is dependent on the hydrolysis of GTP. In contrast, mRNA is not moved during the f2-catalyzed hydrolysis of GTP that is involved in the activation of ribosome-bound fMet-tRNA. This second type of GTP-dependent reaction has been named “Accommodation”.
Keywords: GMP-PCP, elongation factors, initiation factors, oligonucleotides, ribosomes
Full text
PDFSelected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bretscher M. S. Translocation in protein synthesis: a hybrid structure model. Nature. 1968 May 18;218(5142):675–677. doi: 10.1038/218675a0. [DOI] [PubMed] [Google Scholar]
- Chae Y. B., Mazumder R., Ochoa S. Polypeptide chain initiation in E. coli: studies on the function of initiation factor F1. Proc Natl Acad Sci U S A. 1969 Jul;63(3):828–833. doi: 10.1073/pnas.63.3.828. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Erbe R. W., Nau M. M., Leder P. Translation and translocation of defined RNA messengers. J Mol Biol. 1969 Feb 14;39(3):441–460. doi: 10.1016/0022-2836(69)90137-5. [DOI] [PubMed] [Google Scholar]
- Ertel R., Brot N., Redfield B., Allende J. E., Weissbach H. Binding of guanosine 5'-triphosphate by soluble factors required for polypeptide synthesis. Proc Natl Acad Sci U S A. 1968 Mar;59(3):861–868. doi: 10.1073/pnas.59.3.861. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Grunberg-Manago M., Clark B. F., Revel M., Rudland P. S., Dondon J. Stability of different ribosomal complexes with initiator transfer RNA and synthetic messenger RNA. J Mol Biol. 1969 Feb 28;40(1):33–44. doi: 10.1016/0022-2836(69)90294-0. [DOI] [PubMed] [Google Scholar]
- Haenni A. L., Lucas-Lenard J. Stepwise synthesis of a tripeptide. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1363–1369. doi: 10.1073/pnas.61.4.1363. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hershey J. W., Dewey K. F., Thach R. E. Purification and properties of initiation factor f-1. Nature. 1969 Jun 7;222(5197):944–947. doi: 10.1038/222944a0. [DOI] [PubMed] [Google Scholar]
- Hershey J. W., Thach R. E. Role of guanosine 5'-triphosphate in the initiation of Peptide synthesis, I. Synthesis of formylmethionyl-puromycin. Proc Natl Acad Sci U S A. 1967 Mar;57(3):759–766. doi: 10.1073/pnas.57.3.759. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hindley J., Staples D. H. Sequence of a ribosome binding site in bacteriophage Q-beta-RNA. Nature. 1969 Dec 6;224(5223):964–967. doi: 10.1038/224964a0. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D., Dewey K. F., Hershey J. W., Thach R. E. Guanosine 5'-triphosphatase activity of initiation factor f2. Proc Natl Acad Sci U S A. 1968 Nov;61(3):1066–1070. doi: 10.1073/pnas.61.3.1066. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Kolakofsky D., Dewey K., Thach R. E. Purification and properties of initiation factor f2. Nature. 1969 Aug 16;223(5207):694–697. doi: 10.1038/223694a0. [DOI] [PubMed] [Google Scholar]
- Kolakofsky D., Ohta T., Thach R. E. Junction of the 50S ribosomal subunit with the 30S initiation complex. Nature. 1968 Oct 19;220(5164):244–247. doi: 10.1038/220244a0. [DOI] [PubMed] [Google Scholar]
- Kuechler E., Rich A. Position of the initiator and peptidyl sites in the E. coli ribosome. Nature. 1970 Mar 7;225(5236):920–924. doi: 10.1038/225920a0. [DOI] [PubMed] [Google Scholar]
- Kuriki Y., Kaji A. Factor- and guanosine 5'-triphosphate-dependent release of deacylated transfer RNA from 70S ribosomes. Proc Natl Acad Sci U S A. 1968 Dec;61(4):1399–1405. doi: 10.1073/pnas.61.4.1399. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lelong J. C., Grunberg-Manago M., Dondon J., Gros D., Gros F. Interaction between guanosine derivatives and factors involved in the initiation of protein synthesis. Nature. 1970 May 9;226(5245):505–510. doi: 10.1038/226505a0. [DOI] [PubMed] [Google Scholar]
- Lengyel P., Söll D. Mechanism of protein biosynthesis. Bacteriol Rev. 1969 Jun;33(2):264–301. doi: 10.1128/br.33.2.264-301.1969. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas-Lenard J., Haenni A. L. Release of transfer RNA during peptide chain elongation. Proc Natl Acad Sci U S A. 1969 May;63(1):93–97. doi: 10.1073/pnas.63.1.93. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Lucas-Lenard J., Tao P., Haenni A. L. Further studies on bacterial polypeptide elongation. Cold Spring Harb Symp Quant Biol. 1969;34:455–462. doi: 10.1101/sqb.1969.034.01.051. [DOI] [PubMed] [Google Scholar]
- Modolell J., Davis B. D. Breakdown by streptomycin of initiation complexes formed on ribosomes of Escherichia coli. Proc Natl Acad Sci U S A. 1970 Nov;67(3):1148–1155. doi: 10.1073/pnas.67.3.1148. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Nishizuka Y., Lipmann F. The interrelationship between guanosine triphosphatase and amino acid polymerization. Arch Biochem Biophys. 1966 Sep 26;116(1):344–351. doi: 10.1016/0003-9861(66)90040-3. [DOI] [PubMed] [Google Scholar]
- Ohta T., Sarkar S., Thach R. E. The role of guanosine 5'-triphosphate in the initiation of peptide synthesis. 3. Binding of formylmethionyl-tRNA to ribosomes. Proc Natl Acad Sci U S A. 1967 Oct;58(4):1638–1644. doi: 10.1073/pnas.58.4.1638. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ravel J. M., Shorey R. L., Garner C. W., Dawkins R. C., Shive W. The role of an aminoacyl-tRNA-GTP-protein complex in polypeptide synthesis. Cold Spring Harb Symp Quant Biol. 1969;34:321–330. doi: 10.1101/sqb.1969.034.01.039. [DOI] [PubMed] [Google Scholar]
- Remold-O'Donnell E., Thach R. E. A new method for the purification of initiation factor F2 in high yield, and an estimation of stoichiometry in the binding reaction. J Biol Chem. 1970 Nov 10;245(21):5737–5742. [PubMed] [Google Scholar]
- Roufa D. J., Skogerson L. E., Leder P. Translation of phage Qbeta mRNA: a test of the two-site model for ribosomal function. Nature. 1970 Aug 8;227(5258):567–570. doi: 10.1038/227567a0. [DOI] [PubMed] [Google Scholar]
- Sarkar S., Thach R. E. Inhibition of formylmethionyl-transfer RNA binding to ribosomes by tetracycline. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1479–1486. doi: 10.1073/pnas.60.4.1479. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Skoultchi A., Ono Y., Waterson J., Lengyel P. Peptide chain elongation. Cold Spring Harb Symp Quant Biol. 1969;34:437–454. doi: 10.1101/sqb.1969.034.01.050. [DOI] [PubMed] [Google Scholar]
- Steitz J. A. Polypeptide chain initiation: nucleotide sequences of the three ribosomal binding sites in bacteriophage R17 RNA. Nature. 1969 Dec 6;224(5223):957–964. doi: 10.1038/224957a0. [DOI] [PubMed] [Google Scholar]
- Sundararajan T. A., Thach R. E. Role of the formylmethionine codon AUG in phasing translation of synthetic messenger RNA. J Mol Biol. 1966 Aug;19(1):74–90. doi: 10.1016/s0022-2836(66)80051-7. [DOI] [PubMed] [Google Scholar]
- Takanami M., Yan Y., Jukes T. H. Studies on the site of ribosomal binding of f2 bacteriophage RNA. J Mol Biol. 1965 Jul;12(3):761–773. doi: 10.1016/s0022-2836(65)80325-4. [DOI] [PubMed] [Google Scholar]
- Thach R. E., Dewey K. F., Mykolajewycz N. Role of guanosine 5'-triphosphate in the initiation of peptide synthesis, II. Synthesis of dipeptides. Proc Natl Acad Sci U S A. 1967 Apr;57(4):1103–1109. doi: 10.1073/pnas.57.4.1103. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Thach S. S., Thach R. E. 1 molecule of guanosine triphosphate is present in each 30S initiation complex. Nat New Biol. 1971 Feb 17;229(7):219–221. doi: 10.1038/newbio229219a0. [DOI] [PubMed] [Google Scholar]
- WATSON J. D. THE SYNTHESIS OF PROTEINS UPON RIBOSOMES. Bull Soc Chim Biol (Paris) 1964;46:1399–1425. [PubMed] [Google Scholar]