Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1971 Aug;68(8):1858–1861. doi: 10.1073/pnas.68.8.1858

Biochemical Differentiation in Reaggregating Brain Cell Culture

Nicholas W Seeds 1,2
PMCID: PMC389308  PMID: 4108524

Abstract

Dissociated cells from embryonic mouse brain reassociate in rotation culture to form aggregates. During cell culture the specific activities of choline acetyl-transferase (EC 2.3.1.6), acetylcholinesterase (EC 3.1.1.7), and glutamate decarboxylase (EC 4.1.1.15) in the aggregates increase up to twenty-fold, a phenomenon that approximates some of the biochemical events in the development of the mouse brain.

Keywords: morphology, enzyme assays, mouse embryo

Full text

PDF
1858

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. AUSTIN L., BERRY W. K. Two selective inhibitors of cholinesterase. Biochem J. 1953 Jul;54(4):695–700. [PMC free article] [PubMed] [Google Scholar]
  2. Aghajanian G. K., Bloom F. E. The formation of synaptic junctions in developing rat brain: a quantitative electron microscopic study. Brain Res. 1967 Dec;6(4):716–727. doi: 10.1016/0006-8993(67)90128-x. [DOI] [PubMed] [Google Scholar]
  3. BAGDASARIAN G., HULANICKA D. CHANGES OF MITOCHONDRIAL GLUCOSE-6-PHOSPHATE DEHYDROGENASE AND 6-PHOSPHOGLUCONATE DEHYDROGENASE DURING BRAIN DEVELOPMENT. Biochim Biophys Acta. 1965 May 18;99:367–369. doi: 10.1016/s0926-6593(65)80134-5. [DOI] [PubMed] [Google Scholar]
  4. Benda P., Lightbody J., Sato G., Levine L., Sweet W. Differentiated rat glial cell strain in tissue culture. Science. 1968 Jul 26;161(3839):370–371. doi: 10.1126/science.161.3839.370. [DOI] [PubMed] [Google Scholar]
  5. Blume A., Gilbert F., Wilson S., Farber J., Rosenberg R., Nirenberg M. Regulation of acetylcholinesterase in neuroblastoma cells. Proc Natl Acad Sci U S A. 1970 Oct;67(2):786–792. doi: 10.1073/pnas.67.2.786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DeLong G. R. Histogenesis of fetal mouse isocortex and hippocampus in reaggregating cell cultures. Dev Biol. 1970 Aug;22(4):563–583. doi: 10.1016/0012-1606(70)90169-7. [DOI] [PubMed] [Google Scholar]
  7. HEBB C. O. Choline acetylase in the developing nervous system of the rabbit and guinea-pig. J Physiol. 1956 Sep 27;133(3):566–570. doi: 10.1113/jphysiol.1956.sp005609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Haber B., Kuriyama K., Roberts E. L-glutamic acid decarboxylase: a new type in glial cells and human brain gliomas. Science. 1970 May 1;168(3931):598–599. doi: 10.1126/science.168.3931.598. [DOI] [PubMed] [Google Scholar]
  9. KUHLMAN R. E., LOWRY O. H. Quantitative histochemical changes during the development of the rat cerebral cortex. J Neurochem. 1956 Dec;1(2):173–180. doi: 10.1111/j.1471-4159.1956.tb12070.x. [DOI] [PubMed] [Google Scholar]
  10. Kao F. T., Puck T. T. Genetics of somatic mammalian cells, VII. Induction and isolation of nutritional mutants in Chinese hamster cells. Proc Natl Acad Sci U S A. 1968 Aug;60(4):1275–1281. doi: 10.1073/pnas.60.4.1275. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. METZLER C. J., HUMM D. G. The determination of cholinesterase activity in whole brains of developing rats. Science. 1951 Apr 6;113(2936):382–383. doi: 10.1126/science.113.2936.382. [DOI] [PubMed] [Google Scholar]
  13. ROBERTS E., HARMAN P. J., FRANKEL S. gamma Aminobutyric acid content and glutamic decarboxylase activity in developing mouse brain. Proc Soc Exp Biol Med. 1951 Dec;78(3):799–803. doi: 10.3181/00379727-78-19224. [DOI] [PubMed] [Google Scholar]
  14. ROBERTS E., SIMONSEN D. G. Some properties of L-glutamic decarboxylase in mouse brain. Biochem Pharmacol. 1963 Feb;12:113–134. doi: 10.1016/0006-2952(63)90177-1. [DOI] [PubMed] [Google Scholar]
  15. ROBINS E., LOWE I. P. Quantitative histochemical studies of the morphogenesis of the cerebellum. I. Total lipid and four enzymes. J Neurochem. 1961 Nov;8:81–95. doi: 10.1111/j.1471-4159.1961.tb13529.x. [DOI] [PubMed] [Google Scholar]
  16. Schrier B. K., Shuster L. A simplified radiochemical assay for choline acetyltransferase. J Neurochem. 1967 Oct;14(10):977–985. doi: 10.1111/j.1471-4159.1967.tb09509.x. [DOI] [PubMed] [Google Scholar]
  17. Seeds N. W., Gilman A. G., Amano T., Nirenberg M. W. Regulation of axon formation by clonal lines of a neural tumor. Proc Natl Acad Sci U S A. 1970 May;66(1):160–167. doi: 10.1073/pnas.66.1.160. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES