Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1996 Jul 9;93(14):7042–7047. doi: 10.1073/pnas.93.14.7042

bcl-2 overexpression reduces apoptotic photoreceptor cell death in three different retinal degenerations.

J Chen 1, J G Flannery 1, M M LaVail 1, R H Steinberg 1, J Xu 1, M I Simon 1
PMCID: PMC38932  PMID: 8692941

Abstract

Apoptosis of photoreceptors occurs infrequently in adult retina but can be triggered in inherited and environmentally induced retinal degenerations. The protooncogene bcl-2 is known to be a potent regulator of cell survival in neurons. We created lines of transgenic mice overexpressing bcl-2 to test for its ability to increase photoreceptor survival. Bcl-2 increased photoreceptor survival in mice with retinal degeneration caused by a defective opsin or cGMP phosphodiesterase. Overexpression of Bcl-2 in normal photoreceptors also decreased the damaging effects of constant light exposure. Apoptosis was induced in normal photoreceptors by very high levels of bcl-2. We conclude that bcl-2 is an important regulator of photoreceptor cell death in retinal degenerations.

Full text

PDF
7042

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Carter-Dawson L. D., LaVail M. M., Sidman R. L. Differential effect of the rd mutation on rods and cones in the mouse retina. Invest Ophthalmol Vis Sci. 1978 Jun;17(6):489–498. [PubMed] [Google Scholar]
  2. Chang G. Q., Hao Y., Wong F. Apoptosis: final common pathway of photoreceptor death in rd, rds, and rhodopsin mutant mice. Neuron. 1993 Oct;11(4):595–605. doi: 10.1016/0896-6273(93)90072-y. [DOI] [PubMed] [Google Scholar]
  3. Chen J., Makino C. L., Peachey N. S., Baylor D. A., Simon M. I. Mechanisms of rhodopsin inactivation in vivo as revealed by a COOH-terminal truncation mutant. Science. 1995 Jan 20;267(5196):374–377. doi: 10.1126/science.7824934. [DOI] [PubMed] [Google Scholar]
  4. Chen S. T., Garey L. J., Jen L. S. Bcl-2 proto-oncogene protein immunoreactivity in normally developing and axotomised rat retinas. Neurosci Lett. 1994 May 19;172(1-2):11–14. doi: 10.1016/0304-3940(94)90650-5. [DOI] [PubMed] [Google Scholar]
  5. Dryja T. P., Li T. Molecular genetics of retinitis pigmentosa. Hum Mol Genet. 1995;4(Spec No):1739–1743. doi: 10.1093/hmg/4.suppl_1.1739. [DOI] [PubMed] [Google Scholar]
  6. Faktorovich E. G., Steinberg R. H., Yasumura D., Matthes M. T., LaVail M. M. Basic fibroblast growth factor and local injury protect photoreceptors from light damage in the rat. J Neurosci. 1992 Sep;12(9):3554–3567. doi: 10.1523/JNEUROSCI.12-09-03554.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Flannery J. G., Farber D. B., Bird A. C., Bok D. Degenerative changes in a retina affected with autosomal dominant retinitis pigmentosa. Invest Ophthalmol Vis Sci. 1989 Feb;30(2):191–211. [PubMed] [Google Scholar]
  8. Hockenbery D. M. bcl-2, a novel regulator of cell death. Bioessays. 1995 Jul;17(7):631–638. doi: 10.1002/bies.950170709. [DOI] [PubMed] [Google Scholar]
  9. Hockenbery D., Nuñez G., Milliman C., Schreiber R. D., Korsmeyer S. J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990 Nov 22;348(6299):334–336. doi: 10.1038/348334a0. [DOI] [PubMed] [Google Scholar]
  10. LaVail M. M., Battelle B. A. Influence of eye pigmentation and light deprivation on inherited retinal dystrophy in the rat. Exp Eye Res. 1975 Aug;21(2):167–192. doi: 10.1016/0014-4835(75)90080-9. [DOI] [PubMed] [Google Scholar]
  11. LaVail M. M., Gorrin G. M., Repaci M. A., Thomas L. A., Ginsberg H. M. Genetic regulation of light damage to photoreceptors. Invest Ophthalmol Vis Sci. 1987 Jul;28(7):1043–1048. [PubMed] [Google Scholar]
  12. LaVail M. M., Unoki K., Yasumura D., Matthes M. T., Yancopoulos G. D., Steinberg R. H. Multiple growth factors, cytokines, and neurotrophins rescue photoreceptors from the damaging effects of constant light. Proc Natl Acad Sci U S A. 1992 Dec 1;89(23):11249–11253. doi: 10.1073/pnas.89.23.11249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Lem J., Applebury M. L., Falk J. D., Flannery J. G., Simon M. I. Tissue-specific and developmental regulation of rod opsin chimeric genes in transgenic mice. Neuron. 1991 Feb;6(2):201–210. doi: 10.1016/0896-6273(91)90356-5. [DOI] [PubMed] [Google Scholar]
  14. Li Z. Y., Jacobson S. G., Milam A. H. Autosomal dominant retinitis pigmentosa caused by the threonine-17-methionine rhodopsin mutation: retinal histopathology and immunocytochemistry. Exp Eye Res. 1994 Apr;58(4):397–408. doi: 10.1006/exer.1994.1032. [DOI] [PubMed] [Google Scholar]
  15. Lolley R. N., Rong H., Craft C. M. Linkage of photoreceptor degeneration by apoptosis with inherited defect in phototransduction. Invest Ophthalmol Vis Sci. 1994 Feb;35(2):358–362. [PubMed] [Google Scholar]
  16. Macke J. P., Hennessey J. C., Nathans J. Rhodopsin mutation proline347-to-alanine in a family with autosomal dominant retinitis pigmentosa indicates an important role for proline at position 347. Hum Mol Genet. 1995 Apr;4(4):775–776. doi: 10.1093/hmg/4.4.775. [DOI] [PubMed] [Google Scholar]
  17. Pittler S. J., Baehr W. Identification of a nonsense mutation in the rod photoreceptor cGMP phosphodiesterase beta-subunit gene of the rd mouse. Proc Natl Acad Sci U S A. 1991 Oct 1;88(19):8322–8326. doi: 10.1073/pnas.88.19.8322. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Portera-Cailliau C., Sung C. H., Nathans J., Adler R. Apoptotic photoreceptor cell death in mouse models of retinitis pigmentosa. Proc Natl Acad Sci U S A. 1994 Feb 1;91(3):974–978. doi: 10.1073/pnas.91.3.974. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Rao-Mirotznik R., Harkins A. B., Buchsbaum G., Sterling P. Mammalian rod terminal: architecture of a binary synapse. Neuron. 1995 Mar;14(3):561–569. doi: 10.1016/0896-6273(95)90312-7. [DOI] [PubMed] [Google Scholar]
  20. Raport C. J., Lem J., Makino C., Chen C. K., Fitch C. L., Hobson A., Baylor D., Simon M. I., Hurley J. B. Downregulation of cGMP phosphodiesterase induced by expression of GTPase-deficient cone transducin in mouse rod photoreceptors. Invest Ophthalmol Vis Sci. 1994 Jun;35(7):2932–2947. [PubMed] [Google Scholar]
  21. Steller H. Mechanisms and genes of cellular suicide. Science. 1995 Mar 10;267(5203):1445–1449. doi: 10.1126/science.7878463. [DOI] [PubMed] [Google Scholar]
  22. Sung C. H., Makino C., Baylor D., Nathans J. A rhodopsin gene mutation responsible for autosomal dominant retinitis pigmentosa results in a protein that is defective in localization to the photoreceptor outer segment. J Neurosci. 1994 Oct;14(10):5818–5833. doi: 10.1523/JNEUROSCI.14-10-05818.1994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Thompson C. B. Apoptosis in the pathogenesis and treatment of disease. Science. 1995 Mar 10;267(5203):1456–1462. doi: 10.1126/science.7878464. [DOI] [PubMed] [Google Scholar]
  24. Tso M. O., Zhang C., Abler A. S., Chang C. J., Wong F., Chang G. Q., Lam T. T. Apoptosis leads to photoreceptor degeneration in inherited retinal dystrophy of RCS rats. Invest Ophthalmol Vis Sci. 1994 May;35(6):2693–2699. [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES